

ZDMP: Zero Defects Manufacturing Platform

WP4: Technical Challenge: Requirements,
Specifications, and Standardisation

D4.4a: Functional Specification -
Vs: 1.0.3

Deliverable Lead and Editor: Tim Dellas, ASC

Contributing Partners: All Partners from WP 5,6,7,8, 9,10

Date: 2020-05

Dissemination: Public

Status: EU Approved

Grant Agreement:
825631 Abstract

This deliverable is the functional specification of ZDMP. The
document is structured following the components identified in the
architecture specification of ZDMP in D4.3a. This document is the
basis for the technical specification, although iteratively build with
it.

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public II / X

Document Status

Deliverable Lead

Tim Dellas, ASC

Internal
Reviewer 1

Christian Melchiorre, SOFT

Internal
Reviewer 2

Juan Pardo and Sandra Vilaplana Llin, CETECK

Internal
Reviewer 3

Stuart Campbell, ICE

Type

Deliverable

Work Package

WP4: Technical Challenge: Requirements, Specifications, and
Standardisation

ID

D4.4a: Functional Specification and Update

Due Date

2019-07

Delivery Date

2020-05 – This is an interim update to the submitted M9 version due
to some issues detected

Status

EU Approved

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public III / X

Project Partners:

For full details of partners go to www.zdmp.eu/partners

http://www.zdmp.eu/
file:///E:/owncloud-asc/ZDMP/Work%20Packages/WP1/Task%201.1%20-%20Project%20Management%20Set%20Up,%20Quality%20Procedures,%20and%20Metric%20Definition/D1.1%20-%20Project%20Handbook%20M3/Working/Styleguide/www.zdmp.eu/partners

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public IV / X

Executive Summary

D4.4a Functional Specification is the resulting artefact of the task T4.4 Functional
Specification. The task involved further specifying software tasks, which was started with
T4.3 Architectural Principles and Design.

T4.4 focusses on the following aspects:

• Understanding the features provided by the base components of WP5-6 and the more
specific features of the process quality and product quality components of WP7-8,
which were broken into modules in T4.3

• Addressing the vApps (the applications to be developed on top of the ZDMP platform)
in the same way as other components, as those will be created to solve the use cases
in ZDMP

• Focussing for all the software parts on features, the dimensions What, Why, Who,
Where and When and looking at which requirements are covered by a certain function

In summary, the functions of all necessary software modules needed to solve the use
cases were detailed for the whole consortium to be evaluated and understood, and the
main results of the work going into this massive document are the reflections and thoughts
the describing consortium partners had in defining these functions and understanding the
requirements documents. Still, this document remains as a functional catalogue to be
further consulted throughout the project.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public V / X

Table of Contents

0 Introduction .. 1

1 Context .. 5

1.1 Existing ZDMP Deliverables .. 5
1.1.1 D2.3 Industry Scenarios and Use Cases ... 5

1.1.2 D2.4 Manufacturing Reference Model Analysis Document 6
1.1.3 D4.1 Requirements Document .. 7
1.1.4 D4.2 User Mock-ups Document ... 7
1.1.5 D4.3 Architecture Document .. 7

1.2 Future ZDMP Deliverables .. 7

2 Functional Specification .. 9

2.1 Responsibilities for the WP5-8 Components ... 9
2.2 Responsibilities for zApps ... 13

2.3 Template ... 14
2.4 Workflows, Use-Case and Sequence Diagrams ... 15

3 Developer Tier: Design-time .. 17

3.1 Data Harmonisation Designer (T5.3) .. 18

3.1.1 Overall functional characterisation & Context .. 18
3.1.2 Workflows .. 27

3.1.3 Additional Issues ... 38
3.2 Orchestration Designer (T5.4) ... 39

3.2.1 Overall functional characterisation & Context .. 39

3.2.2 Functions / Features .. 39

3.2.3 Workflows .. 42
3.2.4 Additional Issues ... 45

3.3 AI-Analytics Designer (T5.6) ... 47

3.3.1 Overall functional characterisation & Context .. 47
3.3.2 Functions / Features .. 47

3.3.3 Workflows .. 52
3.4 Applications Builder (T6.1) .. 57

3.4.1 Overall functional characterization & Context .. 57
3.4.2 Functions / Features .. 58
3.4.3 Workflows .. 63

3.5 SDK API Management (T6.1) ... 67

3.5.1 Overall Functional Characterization ... 67
3.5.2 Functions / Features .. 68
3.5.3 Workflows .. 71

3.6 SDK Development Tools (T6.1) .. 73
3.6.1 Overall Functional Characterization ... 73
3.6.2 Functions / Features .. 73
3.6.3 Workflows .. 75

3.7 Security Designer (T6.2) ... 80

3.7.1 Overall functional characterization & Context .. 80
3.7.2 Functions / Features .. 80
3.7.3 Workflows .. 83

3.8 Prediction and Optimisation Designer (WP7) .. 86

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public VI / X

3.8.1 Overall functional characterization & Context .. 86
3.8.2 Functions / Features .. 86

3.8.3 Workflows .. 89
3.8.4 Additional Issues ... 93

4 Enterprise Tier: Use-time... 94

4.1 Security Command Centre (T5.2) ... 95
4.1.1 Overall functional characterization & Context .. 95

4.1.2 Functions / Features .. 95
4.1.3 Workflows .. 96

4.2 Installation Broker Service (T5.2) .. 98
4.2.1 Overall functional characterization & Context .. 98
4.2.2 Functions / Features .. 98

4.2.3 Workflows .. 99
4.3 Identity Service (T5.2) ... 101

4.3.1 Overall functional characterization & Context .. 101
4.3.2 Functions / Features .. 101
4.3.3 Workflows .. 102

4.4 Authorisation Service (T5.2) .. 103

4.4.1 Overall functional characterization & Context .. 103
4.4.2 Functions / Features .. 103
4.4.3 Workflows .. 104

4.5 Intrusion Detection Service (T5.2) ... 105
4.5.1 Overall functional characterization & Context .. 105

4.5.2 Functions / Features .. 105
4.5.3 Workflows .. 105

4.6 Secure Communications PKI Service (T5.2) ... 107
4.6.1 Overall functional characterization & Context .. 107

4.6.2 Functions / Features .. 107
4.6.3 Workflows .. 108

4.7 Marketplace (T6.2) .. 112

4.7.1 Overall functional characterisation & Context .. 112
4.7.2 Functions / Features .. 112

4.7.3 Workflows .. 114
4.8 Storage (T6.2) ... 118

4.8.1 Overall functional characterisation & Context .. 118

4.8.2 Functions / Features .. 118
4.8.3 Workflows .. 122

4.9 Human Collaboration (T6.3) .. 125

4.9.1 Overall functional characterisation & Context .. 125

4.9.2 Functions / Features .. 125
4.9.3 Workflows .. 127

4.10 Portal (T6.4) .. 130
4.10.1 Overall functional characterisation & Context 130
4.10.2 Functions / Features .. 130

4.10.3 Workflows .. 131
4.10.4 Additional Issues .. 132

4.11 Application Run-time (T6.4) .. 134
4.11.1 Overall functional characterisation & Context 134
4.11.2 Functions / Features .. 134

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public VII / X

4.11.3 Workflows .. 135
4.11.4 Additional Issues .. 137

4.12 Inter-platform Interoperability (T6.5) .. 138
4.12.1 Overall Functional Characterisation & Context 138
4.12.2 Functions / Features .. 138
4.12.3 Workflows .. 141
4.12.4 Additional Issues .. 142

5 Platform Tier: Run-time ... 143

5.1 Data Harmonisation Run-time (T5.3) .. 144
5.1.1 Overall functional characterisation & Context .. 144
5.1.2 Functions / Features .. 144
5.1.3 Workflows .. 145

5.1.4 Additional Issues ... 147
5.2 Orchestration Run-time (T5.4) .. 148

5.2.1 Overall functional characterisation & Context .. 148
5.2.2 Functions / Features .. 148
5.2.3 Workflows .. 150
5.2.4 Additional Issues ... 151

5.3 Monitoring and Alerting (T5.4) ... 152
5.3.1 Overall functional characterization & Context .. 152
5.3.2 Functions / Features .. 152

5.3.3 Workflows .. 154
5.4 Autonomous Computing (T5.5) ... 158

5.4.1 Overall functional characterization & Context .. 158
5.4.2 Functions / Features .. 158

5.4.3 Workflows .. 160
5.5.1 Overall functional characterisation & Context .. 165

5.5.2 Functions / Features .. 165
5.5.3 Workflows .. 167

5.6 Service and Message Bus (T6.4) .. 170

5.6.1 Overall Functional Characterisation & Context 170
5.6.2 Functions / Features .. 170

5.6.3 Workflows .. 175
5.7 Prediction and Optimisation Run-time (WP7) .. 184

5.7.1 Overall functional characterization & Context .. 184

5.7.2 Functions / Features .. 184
5.7.3 Workflows .. 185

5.8 Process Assurance Runtime (T7.4) .. 189

5.8.1 Overall functional characterization & Context .. 189

5.8.2 Functions / Features .. 190
5.8.3 Workflows .. 193

5.9 Models Deployment Manager (T8.2, T8.4) ... 197
5.9.1 Overall functional characterization & Context .. 197
5.9.2 Functions / Features .. 197

5.9.3 Workflows .. 199
5.10 Data Processor (T8.2, T8.4) .. 200

5.10.1 Overall functional characterization & Context 200
5.10.2 Functions / Features .. 200
5.10.3 Workflows .. 201

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public VIII / X

5.11 Product Quality Model Trainer (T8.2, T8.4) ... 203
5.11.1 Overall functional characterization & Context 203

5.11.2 Functions / Features .. 203
5.11.3 Workflows .. 204

5.12 Predictions Repository (T8.2, T8.4) .. 206
5.12.1 Overall functional characterization & Context 206
5.12.2 Functions / Features .. 206

5.12.3 Workflows .. 206
5.13 Quality Predictor (T8.2, T8.4) .. 207

5.13.1 Overall functional characterization & Context 207
5.13.2 Functions / Features .. 207
5.13.3 Workflows .. 209

5.14 Supervision Model Trainer (T8.2, T8.4) .. 211

5.14.1 Overall functional characterization & Context 211

5.14.2 Functions / Features .. 211
5.14.3 Workflows .. 213

5.15 Anomaly Detector (T8.2, T8.4) .. 214
5.15.1 Functions / Features .. 214

5.15.2 Workflows .. 215

6 Edge Tier: Run-time .. 218

6.1 Data Acquisition and IIoT (T5.1) ... 219

6.1.1 Overall functional characterization & Context .. 219
6.1.2 Functions / Features .. 219

6.1.3 Workflows .. 223
6.2 Distributed Computing (T5.5) .. 229

6.2.1 Overall functional characterization & Context .. 229
6.2.2 Functions / Features .. 229

6.2.3 Workflows .. 230
6.3 Digital Twin (T7.5, T8.1) .. 233

6.2.4 Overall functional characterization & Context .. 234

6.2.5 Functions / Features .. 234
6.2.6 Workflows .. 236

6.3 Quality Inspection Configuration and Execution (T8.3) 237
6.3.1 Overall functional characterization & Context .. 238
6.3.2 Functions / Features .. 238

6.3.3 Workflows .. 240
6.4 Quality AI Inspection: Design and Training (T8.3) ... 243

6.4.1 Overall functional characterization & Context .. 243

6.4.2 Functions / Features .. 243

6.4.3 Workflows .. 245
6.4.4 Additional Issues ... 247

7 zApps .. 248

7.1 zMachineMonitor & Analytics (zA2.01-zA2.02) ... 248
7.1.1 Overall functional characterization & Context .. 248

7.1.2 Functions / Features .. 248
7.1.3 Workflows .. 251

7.2 zParameterMonitor & Analytics (zA2.03-z2.04) .. 251
7.2.1 Overall functional characterization & Context .. 251

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public IX / X

7.2.2 Functions / Features .. 252
7.2.3 Workflows .. 254

7.3 z3DScannerDriver & z3DGenerator (zA2.05-zA2.06) 254
7.3.1 Overall functional characterization & Context .. 254
7.3.2 Functions / Features .. 255
7.3.3 Workflows .. 257

7.4 zAnomalyDetector (zA1.01) .. 257

7.4.1 Overall functional characterization & Context .. 257
7.4.2 Functions / Features .. 257
7.4.3 Workflows .. 259

7.5 zDigitalTwin (z1.02) .. 263
7.5.1 Overall functional characterization & Context .. 263

7.5.2 Functions / Features .. 263

7.5.3 Workflows .. 266

7.6 zAlarm (zA1.03) .. 269
7.6.1 Overall functional characterization & Context .. 269
7.6.2 Functions / Features .. 269
7.6.3 Workflows .. 270

7.7 Steel Tubes: Production Monitor (zA4.01-zA4.04) .. 272
7.7.1 Overall functional characterization & Context .. 272
7.7.2 Functions / Features .. 272

7.7.3 Workflows .. 277
7.8 Stones Tiles: Equipment Wear Detection (zA4.05-4.09) 279

7.8.1 Overall functional characterization & Context .. 279
7.8.2 Functions / Features .. 279
7.8.3 Workflows .. 284

7.9 zRemoteQC (zA4.10) .. 286

7.9.1 Overall functional characterization & Context .. 286
7.9.2 Functions / Features .. 286
7.10.1 Overall functional characterization & Context 288

7.10.2 Functions / Features .. 288
7.11.1 Overall functional characterization & Context 290

7.11.2 Functions / Features .. 290
7.12.1 Overall functional characterization & Context 292
7.12.2 Functions / Features .. 292

7.13 zXRAYMonitor & Analytics (zA3.01 & zA3.02) .. 293
7.13.1 Overall functional characterization & Context 293

7.13.2 Functions / Features .. 293

7.13.3 Workflows .. 297

7.13.4 Additional Issues .. 301
7.14 zFeedbackMFT (zA3.03) .. 302

7.14.1 Overall functional characterization & Context 302
7.14.2 Functions / Features .. 302
7.14.3 Workflows .. 305

7.14.4 Additional Issues .. 308
7.15 zArtificial IntelligenceAFT (zA3.06) ... 309

7.15.1 Overall functional characterization & Context 309
7.15.2 Functions / Features .. 309
7.15.3 Workflows .. 310
7.15.4 Additional Issues .. 312

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public X / X

7.16 zDriver & zLineData & zDataArchiveControl (zA3.07&3.08, 3.15) 312
7.16.1 Overall functional characterization & Context 312

7.16.2 Functions / Features .. 312
7.16.3 Workflows .. 315
7.16.4 Additional Issues .. 317

7.17 zVisualManager, zCycleTimeManager, zAutomaticCall, zPowerManagement
(zA3.09, zA3.11, zA3.12, zA3.13) ... 318

7.17.1 Overall functional characterization & Context 318
7.17.2 Functions / Features .. 318
7.17.3 Workflows .. 319
7.17.4 Additional Issues .. 320

7.18 zProductVersionControl, zAutomaticMaterialOrdering (zA3.10, zA3.14) 321

7.18.1 Overall functional characterization & Context 321

7.18.2 Functions / Features .. 321

7.18.3 Workflows .. 322
7.18.4 Additional Issues .. 323

7.19 zArtificial IntelligenceMFT (zA3.04) ... 324
7.19.1 Overall functional characterization & Context 324

7.19.2 Functions / Features .. 324
7.19.3 Workflows .. 325

7.20 zFeedbackAFT (zA3.05) ... 327

7.20.1 Overall functional characterization & Context 327
7.20.2 Functions / Features .. 327

7.20.3 Workflows .. 328

8 Conclusions ... 2

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 1 / 334

0 Introduction

0.1 ZDMP Project Overview

ZDMP – Zero Defects Manufacturing Platform – is a project funded by the H2020
Framework Programme of the European Commission under Grant Agreement 825631 and
conducted from January 2019 until December 2022. It engages 30 partners (Users,
Technology Providers, Consultants and Research Institutes) from 11 countries with a total
budget of circa 16.2M€. Further information can be found at www.zdmp.eu.

In the last five years, many industrial
production entities in Europe have started
strategic work towards a digital
transformation into the fourth-industrial
revolution termed Industry 4.0. Based on
this new paradigm, companies must
embrace a new technological infrastructure,
which should be easy to implement for their
business and easy to implement with other
businesses across all their machines,
equipment, and systems. The concept of
zero-defects in the management of quality
is one of the main benefits deriving from the
implementation of Industry 4.0, both in the
digitalisation of production processes and
digitalisation of the product quality.

To remain competitive and keep its leading manufacturing position, European industry is
required to produce high quality products at a low cost, in the most efficient way. Today,
manufacturing industry is undergoing a substantial transformation due to the proliferation
of new digital and ICT solutions, which are applied along the production process chain and
are helping to make production more efficient, as in the case of smart factories. The goal
of the ZDMP Project is to develop and establish a digital platform for connected smart
factories, allowing to achieve excellence in manufacturing through zero-defect processes
and zero-defect products.

ZDMP aims at providing such an extendable platform for supporting factories with a high
interoperability level, to cope with the concept of connected factories to reach the goal of
zero-defect production. In this context, ZDMP allows end-users to connect their systems
(ie shop-floor and Enterprise Resource Planning systems) to benefit from the features of
the platform. These benefits include product and production quality assurance amongst
others. For this, the platform provides the tools to allow following each step of production,
using data acquisition to automatically determine the functioning of each step regarding
the quality of the process and product. With this, it is possible to follow production order
status and optimise the overall processes regarding time constraints and product quality,
achieving the zero defects.

http://www.zdmp.eu/
http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 2 / 334

0.2 Deliverable Purpose and Scope

The purpose of this document “D4.4 Functional Specification” is to closer define the
functions and their dimensions What, Where, When, by Whom and Why in close
resemblance to user stories, to closer inspect the stakeholder of the function, the context
the function operates in, as well as timely and specially restrictions in terms of process (eg
this function needs to be activated at the customer site close to the machine after a
particular other function was executed by a worker with manager access rights). Also, a
sequence diagram is used to define the main functions which are more complex in nature
than a request response relationship, to understand the implications on other parts of the
system.

Specifically, the DOA states the following regarding this Deliverable:

O4.4 To create a functional specification of all components

T4.4 Functional Specification ASC M5-7, 46-48
D4.4ab Functional Specification and Update R CO 7, 48 RDI2 & 8

This task will deliver a Functional Specification document to provide an in-depth definition of the
functionalities/behaviours of all ZDMP components. It will explain how related requirements will
be fulfilled. It is an important means to measure the outcome of the individual tasks and the
overall project. Interactions between ZDMP components will be detailed and depicted to guide
the overall flow of functionalities and data between components. Components will be split into
subcomponents and defined via a unified approach. Based on this, it will define the missing
functionalities and implementation needs, which are the foundation for the work to be performed
in the further RTD work packages as well as the Technical Specification.

0.3 Target Audience

The primary target for this document is the partners involved in technical WPs 5,6,7 and 8.
However, it will be of wider relevance to all partners giving an overview of the project's
components. Additionally, as this is a publicly available document, this document may be
of use to the wider scientific and industrial community including other publicly funded
projects and anyone interested in collaborations with ZDMP.

0.4 Deliverable Context

This document is a key deliverable in providing the architectural overview of the technical
sections of the ZDMP project. Its relationship to other documents is as follows:

Primary Preceding documents:

• D2.1 Vision Document: The vision represents the consensus of the ZDMP partners
and provides generic scenarios for which ZDMP should be able to implement

• D2.3 Industry Scenarios and Use Cases: This document provides specific use
cases with respect to industry partners. The architecture needs to be applicable to be
used in these industrial scenarios

• D4.1 Requirement Specification: Provides a list of requirements that were used in
addition to the vision to help design the architecture

• D4.2 User Mock-Ups: Often considered part of the Functional Specification, in
ZDMP mock-ups were created as an independent user-driven document

• D4.3 Functional Specifications: This document uses the components layouts and
the architecture provided

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 3 / 334

0.5 Document Structure

This deliverable is broken down into the following sections:

• Section 1: Context: An introduction including a detailed description of documents
that influence this document

• Section 2: Functional Specification: An overview of the targets of the Functional
Specification and the description of the single sections explained for all components

• Section 3: Developer Tier: Design-time: The developer tier components:
Application Designer, Security Designer, Data Harmonisation Designer,
Orchestration Designer, AI-Analytics Designer and Process Optimisation Designer

• Section 4: Enterprise Tier: Use-time: The enterprise tier consists of higher-level
components that facilitate the main zero defects functionality this includes Security
Run-time, Autonomous Computing, Marketplace, Human Collaboration Application
Run-time, and Inter-platform Interoperability

• Section 5: Platform Tier: Run-time: The platform tier consists of the main zero
defects technology including Process Optimisation Run-time, Process Assurance
Run-time, and Product Assurance Run-time. There are also core components that
are needed to achieve the platform; Data Harmonisation Run-time, Monitoring and
Alerting, Orchestration Run-time, AI-Analytics Run-time, Storage, and the Message
Bus

• Section 6: Edge Tier: Run-time: This tier is for high-performance aspects of the
zero defects manufacturing that must be located close to their data sources. It
includes a Distributed Computing component to facilitate this and Data Acquisition,
Digital Twin and Non-Destructive Inspection components for creating a zero defects
solution

• Section 7: zApps: This section described the different zApps targeted to be built
within WP9 and WP10 of ZDMP as a means of solving the use-cases on top of the
ZDMP platform

• Section 8: Conclusions: An overview of the functional specification and further
recommendations from this document

• Annexes:

• Annex A: Document History

0.6 Document Status

This document is listed in the Description of Action as public as it has information that may
be useful to a wider audience – for example other platforms such as project eFactory
which will connect to elements of ZDMP or the subcall partners.

0.7 Document Dependencies

This document, D4.4a, is the initial version and main release of this document. An update,
D4.4b, is produced at the end of the project. It will incorporate in-project changes (due to
the reality of implementation) and be useful post project and in Zero Defects Limited as a
reference.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 4 / 334

0.8 Glossary and Abbreviations

A definition of common terms related to ZDMP, as well as a list of abbreviations, is
available at http://www.zdmp.eu/glossary.

0.9 External Annexes and Supporting Documents

• None

0.10 Reading Notes

• None

0.11 Document Update

• The original M9 document was submitted and approved at the ZDMP 1st review.
However, some minor issues were found and hence this document updated to
maintain its coherency and because it is a public deliverable

http://www.zdmp.eu/
http://www.zdmp.eu/glossary

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 5 / 334

1 Context

The ZMDP Project develops a Smart Zero Defects environment by deploying and
networking an Intelligent and ‘SME-friendly’ Platform, Application Builder and Marketplace
of developed functionality, applications, and services. The development of zero-defect
solutions will help improve the quality (and profitability) within the manufacturing sector.

Figure 1: ZDMP Relevant Concepts

Figure 1 shows the main aspects that are linked by the platform. ZDMP allows for the
linking of software applications, data, systems integrators, zero defect technology to
manufactures. This link allows manufacturers to improve production by reducing defects
and improving processes.

To put this document into perspective, this section will revisit the Inception and Vision
document (D2.1), the Platform Benchmarking document (D2.2), the Industry Scenarios
and Use-Cases document (D2.3), Manufacturing Reference Model Analysis document
(D2.4), the Requirements document (D4.1) and User Mock-ups document (D4.2).

1.1 Existing ZDMP Deliverables

This document draws from many influences including the existing ZDMP documentation,
such as the DOA, as well as discussions with partners and results from plenary and other
meetings. The main influences have been previous documents from WP4: D4.1.a
Requirements Definition, D.4.2.a User Mock-Ups, and D4.4a Architecture Definition, but
also D2.2 Manufacturing Reference Model Analysis Document and D2.3 Industry
Scenarios and Use Cases. Brief reminders of these documents are explained below but in-
depth readers should examine them in greater detail.

1.1.1 D2.3 Industry Scenarios and Use Cases

D2.3 Industry Sector Scenarios and Use Cases is aimed to describe the functionality of
ZDMP and of applications needed for each pilot. In turn, this then forms the basis of the
specifications and requirements for the development of the ZDMP project. This document
develops the characteristics of each of the four industrial scenarios: Automotive, machine
tool, electronics, and construction.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 6 / 334

The document describes how pilots are currently operated, what problems exist currently,
as well as how they are expected to be improved with the new platform. In each pilot the
user scenario and the problems to solve are identified. The pilot industrial cases were
already summarized in the Architecture document.

The influence of the user’s scenarios on this document is as follows:

• Giving context to the architecture regards to the ZDMP functions and stakeholders

• Describing the zApps to use as user facing applications, with their functions
described in Section 7

1.1.2 D2.4 Manufacturing Reference Model Analysis Document

The D2.4, manufacturing and reference model, document makes recommendations for the
architecture of this project. It recommends using IIRA and RAMI 4.0 architectural models
[DIN+91345]. For the IIRA model, the document recommends using the “Implementation
view”. The component groups have been defined in the Architecture document and have
similarly been used for the Functional Specification.

This document addresses specific recommendations from D2.4 Manufacturing Reference
Model Analysis in the table of Figure 2. Note that many of these recommendations have
been managed by the Architecture document D4.4.1 and only differences are explained.

Recommendation Refere
nce

Priority Response

Use IIRA’s Business, Usage, and Functional
Viewpoints to refine the use case
descriptions

IIRA MEDIUM The use-cases have played an
important role in designing ZDMP,
therefore this document describes
the zApps described in the use-case
documents as the technical
representations of the use-cases in
order to connect the use-cases to
the rest of the architecture

Use IIRA implementation viewpoint to
describe system implementation

IIRA MEDIUM This was addressed in Section 1.1.4
of the Architecture document and
the structure was transferred to his
document

Align the ZDMP high-level system
architecture description to the three-tier IIoT
architectural pattern

IIRA HIGH This was addressed in Section 1.1.4
of the Architecture document and
the structure was transferred to his
document

Use a multi-layered approach (such as the
C4 model) to describe the system
implementation at various levels of
abstraction (eg context, containers,
components, and code)

C4
model

MEDIUM Level 1-3 are managed in the
Architecture document D4.4.1. Level
4 is not outlined in document, but
interfaces are given in the D4.5
Technical Specification, which is an
online reference as it is subject to
continuous change

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 7 / 334

Recommendation Refere
nce

Priority Response

Identify data and control flows between
containers, requirements, and
interdependencies between physical and
virtual connections at the container
boundaries, also considered cyber-security
standards (ISA 62443)

C4
model

MEDIUM The connections between
components were described in the
Architecture document D4.4.1, but is
extended in this document by
presenting sequence diagrams for
each of the components for all non-
trivial interactions and including the
zApps

Figure 2: Recommendation from D2.2

1.1.3 D4.1 Requirements Document

The ZDMP D4.1 Requirements Document identifies the main requirements of the project
by analysing the use-cases.

D4.1a Requirements Annex is a living document and aims to assign responsibilities for
these requirements. The requirements list labels requirement by ID and by zApps and
components. It looks at dependencies of these requirements as well as prioritising them.

This document uses the insights gained from the Requirement Specification by:

• Validating the requirements by outlining the functions of the diverse components and
zApps that will fulfil the named requirements

• Referencing the filled requirements in each function

1.1.4 D4.2 User Mock-ups Document

This document creates graphical designs for zApps and components. Although not
expected to be the exact final designs of the user interfaces. It shows a vision of the
platform and how it will be used. It brings together the complete picture of the ZDMP
platform so that large numbers of partners can envision several types of users and how
they will interact with the platform.

This document uses the following insights from the user-mock-ups:

• Visual understanding of the functions presented in this document

1.1.5 D4.3 Architecture Document

The Architecture document created the basic structure for this functional specification, as
the separation between run time, design time, and the different tiers (Developer Tier,
Enterprise Tier, Platform Tier and Edge Tier) were introduced.

The document uses the following insights from the Architecture:

• A structuring of the existing components

1.2 Future ZDMP Deliverables

Future deliverables of ZDMP will be directly influenced by this specification:

• D4.4 Functional Specification Update: As no upfront specification is perfect and
can represent future reality realistically, this functional specification will be updated

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 8 / 334

towards the end of the project (month 48). It will thus represent changes to the
functions that have occurred during the development of the project

• D4.5 Technical Specification: This is dynamic web utility to create a technical APIs
for each component, interface, data models, and concrete data models. This will
include the definitions of methods, parameters return values, and error handling to be
used at the source code level. The specification takes the architecture and functional
requirements as a basis and provides concrete interfaces between ZDMP software
components, protocols, and class/packages structures, including definitions of
methods and error handling together with the data models. It is derived from the
Architecture document and Functional specification

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 9 / 334

2 Functional Specification

The current document is the ZDMP functional specification and it describes how the ZDMP
platform will work from the user’s perspective. As with any functional specification, this
document does not deal with the technical aspects on how the software is implemented.
Instead, it explains the features provided by the software, specifying its features and
interactions. The mock-ups for the different UIs can be found in D4.2.

Technical aspects associated with the implementation are included in the architecture
(D4.3), and the technical specification represents a living online interface specification
(D4.5).

This functional specification is divided into the functionality and interactions that the user
has with each ZDMP component, which are identified in parallel in the architecture
definition (D4.3). The functional analysis per component and zApp has two perspectives
each:

• Behaviour and Functionality: Containing a story map with the features and
functionality offered and the user stories that need to be developed to implement that
functionality

• Interaction descriptions: Describing for each component the set of interactions with
other ZDMP components and users and describing the exchange of information flows
critical for a unified ZDMP platform

In terms of behaviour and functionality, features describe the functionality at various levels
of aggregation / abstraction.

The main description presents the feature of software from the point of view of the subject
who expects the feature. The subject is not restricted to a ‘human’ ZDMP user (eg an
operator or developer) and can be any entity with a behaviour, eg the component being
described, another component, etc. Feature descriptions answer representative questions
similarly to user stories, to capture in a simple table who wants what, when, where, and
how the subject benefits from the feature. This enables the understanding of the context of
the feature, as explained in the template below. Features include acceptance criteria – a
checklist that determines when the feature is considered completed. The acceptance
criteria are expressed from the point of view of the user listed in the Who-part and provides
a detailed description of the criteria by which user stories should be evaluated and
validated. Features have a unique ID (eg T55F001). Deadlines list the project month when
the feature should be completed (eg M18, M24 and M30).

The functional specification of each component and zApp includes a subsection with the
corresponding UML sequence diagrams, used to depict the interaction between the
subcomponents and external components to the component under definition.

2.1 Responsibilities for the WP5-8 Components

zApps are containerised applications with restful backend interfaces and normally a user
interface. The zApps are initially designed to solve the use-case as described in Industry
Scenarios and Use Cases D2.3. However future zApps can be designed with the platform
to provide new features using the T6.1 Application Builder and uploaded to the platform
through the T6.2 Marketplace. These zApps can call on many of the ZDMP components
as services.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 10 / 334

Services are used through a RESTful API only and may only have User Interface for
configuration purposes only. All services and zApps need to be designed to be (typically)
small, short lived, and have well defined entry and exit points.

To apply this approach, all components implement and publish a REST interface allowing
the exchange of data (primarily) with a messaging bus to be implemented within the
project. ZDMP supports Event-Driven SOA features so that the different components can
decide their interaction pattern and react to internal and external events. Following this
approach, the components of ZDMP can behave either as services or as event producers
and consumers.

Figure 3 shows a the ZDMP high-level architecture grouped into IIRA tiers with an
additional Developer tier.

Figure 3: ZDMP High-Level Architecture

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 11 / 334

ZDMP is based on a federated architecture, which consists of several components split
into the following architectural building blocks:

• Developer Tier (Design-time): These components aide in the production of
containerised applications for zero defect manufacturing - zApps

• Enterprise Tier (Use-time): These components assist the run-time

• Platform Tier (Run-time): This is where zApps are installed. This component
consists of run-time services to provide a base level functionality for ZDMP

• Edge Tier (Run-time): This is composed of the Distributed Computing component
which allows certain zApps to be run at various locations of the system for
performance gains. Many components can be run on the Edge Tier but for
components where this is crucial to many of the use-cases they have been added to
this section

All ZDMP components have been classified into these tiers. The table below shows the
decomposition of ZDMP components together with the task ID they belong. A detailed
description for each of the components depicted in Figure 4 can be found in Sections 3, 4,
5, and 6.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 12 / 334

Task ID: Component Name Lead Company

Developer Tier (Design-time)

T5.3: Data Harmonisation Designer ICE

T5.4: Orchestration Designer ICE

T5.6: AI-Analytics Designer SIVECO

T6.1: Applications Builder ASC

T6.2: Security Designer UOS-ITI

T7.1/T7.2/T7.3/T7.4: Process Quality and Optimisation Designer PROF

Enterprise Tier (Use-time)

T5.2: Secure Installation IKER

T5.2 Secure Communication ITI

T5.2 Secure Authentication/Authorisation IKER

T6.2: Marketplace SIVECO

T6.2: Storage SIVECO

T6.3: Human Collaboration SIVECO

T6.4: Portal ICE

T6.4: Application Run-time ICE

T6.5: Inter-platform Interoperability ICE

Platform Tier (Run-time)

T5.3: Data Harmonisation Run-time ICE

T5.4: Orchestration Run-time ICE

T5.4: Monitoring and Alerting ASC

T5.5: Autonomous Computing ASC

T5.6: AI-Analytics Run-time SIVECO

T6.4: Service and Message Bus SAG

T7.1/T7.2/T7.3: Process Optimisation Run-time UPV

T7.4: Process Assurance Run-time PROF

T8.2/T8.4: Product Assurance Run-time ITI

Edge Tier (Run-time)

T5.1: Data Acquisition SOFT

T5.5 Distributed Computing ASC

T7.3/T8.1: Digital Twin CET

T8.3: Non-Destructive Inspection VSYS

Figure 4: ZDMP Components

T6.6 General Cross-Task Integration and Improvement is not represented in this
document. As its main deliverable is buffer time for integration of the components.

The global architecture and where each component fits within each tier. Each component
has been given an icon as shown in Figure 5.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 13 / 334

Figure 5: Icons for each component. The four rows represent the four tiers.

2.2 Responsibilities for zApps

The following table depicts the responsibilities for the single zApps:

ID Name Responsible WP / Partner

zA1.01 zAnomalyDetector WP9 - ITI

zA1.02 zDigitalTwin WP9 - ITI

zA1.03 zAlarm WP9 - ITI

zA2.01 zMachineMonitor WP9 - IKER

zA2.02 zMachineAnalytics WP9 - IKER

zA2.03 zParameterMonitor WP9 - IKER

zA2.04 zParameterAnalytics WP9 - IKER

zA2.05 z3DScannerDriver WP9 - IKER

zA2.06 z3DGenerator WP9 - IKER

zA3.01 zXRAYMonitor WP10 - UPV

zA3.02 zXRAYAnalytics WP10 - UPV

zA3.03 zFeedbackMFT WP10 - UPV

zA3.04 zArtificialIntelligenceMFT WP10 - SIVECO (subresponsible: UPV)

zA3.05 zFeedbackAFT WP10 - SIVECO (subresponsible: UPV)

zA3.06 zArtificialIntelligenceAFT WP10 – UPV

zA3.07 zDriver WP10 – UPV

zA3.08 zLineData WP10 – UPV

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 14 / 334

zA3.09 zVisualManager WP10 – UPV

zA3.10 zProductVersionControl WP10 – UPV

zA3.11 zAutomaticCall WP10 – UPV

zA3.12 zPowerManager WP10 – UPV

zA3.13 zCycleTimeManager WP10 – UPV

zA3.14 zAutomaticMaterialOrdering WP10 – UPV

zA3.15 zDataArchiveControl WP10 – UPV

zA4.01 zSteelSheetWidthMonitor WP10, Uni (VSYS)

zA4.02 zHorizontalWeldDetection WP10, Uni (VSYS)

zA4.03 zVerticalWeldMonitor WP10, Uni (VSYS)

zA4.04 zShapeTubeMonitor WP10, Uni (VSYS)

zA4.05 zWiresMonitoring WP10 – UNI

zA4.06 zThicknessMonitor WP10 – UNI

zA4.07 zDetectDefects WP10, Uni (VSYS)

zA4.08 zWornOutBladeDectection WP10 – UNI

zA4.09 zTilesCorformity WP10, Uni (VSYS)

zA4.10 zRemoteQC WP10 – UNI

zA4.11 zRescheduler WP10 UPV

zA4.12 zMaterialTracker WP10 – UNI

zA4.13 zMaterialID WP10 – UNI

Figure 6: Partner Responsibilities for zApps

2.3 Template

This is an example for the table

ID / Function /
Requirements filled Function Metainformation

 T61A9

Get List of Stored
Configurations

Priority: Must

Who: zApps Developer

When: Design time in the app builder

Where: Anywhere via a browser
What: Lists existing SDK configuration files, getting their names, detail on
functionality, version, etc

Why: Browse existing configurations to model the SDK

Acceptance Criteria Invoker got a structured list of configurations

Requirements Filled RQ_0011, RQ_0017

Figure 7: Function Table Template

• ID: The identifier for each function should be built up of the task number (eg T61 for
T6.1), then use a letter to identify the subcomponent (in this case A), which should be
communicated to other partners working in the same task and describing functions;
then append a number with three decimals, starting with 001, so that all functions
have a unique ID. Examples: T61A001, T61R006, T61A088

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 15 / 334

• ID for zApps: The zApps have a unique identifier already, so the unique identifier for
the functions of the zApps are combined of the zApp ID, a dot, and another number.
For the zApp zA4.13, the functions should be named zA4.13.1, zA4.13.2, etc

• Function Name: A clear and descriptive name. Multiple features that are closely
related may be combined (eg Create/Read/Update/Delete Stored Configuration)

• Priority: One of “Must”, “Should”, “Could”, which should at least represent the
highest priority listed on the respective requirements. So, if a function fulfils two
“Could” and one “Must” requirement, it should be “Must” itself. It might have a higher
priority than the listed requirements, for example if it is necessary for another function
not covered by the requirements

• Where is the feature used: Can it be used anywhere via a mobile zApp or web-
browser (“Cloud layer”), does it have to be used on-site (“Fog layer”), in the same
physical network or even close to a machine to minimise latency (“Edge layer”), or
would it even be more useful if it were deployed on an IoT device (“Mist layer”)?

• When is it used, timing wise it might be used during design or runtime, and maybe
when a specific phase or event occurs

• Who uses the feature, this means which role does the user have, might even be
other components or zApps using APIs

• What is the feature?

• Why is the feature needed, what is the reason for using it?

• Access Criteria: Simple sentences describing what must happen when this function
is used. If the described statement is true when this function was performed, the
function works as expected. Multiple acceptance criteria can be put as a list of
sentences

2.4 Workflows, Use-Case and Sequence Diagrams

Figure 8: Example for function “Composing a zApp”

For all more complex functions, a sequence diagram or a use case diagram is designed to
illustrate the workflows and interactions necessary between zApps and ZDMP components

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 16 / 334

to fulfil the function. More complex in this sense means that diagrams are not created for
the sake of it but to describe functions that need more complex interactions and are
therefore not self-explanatory.

Sequence Diagrams and Use-Case-Diagrams are translatable, therefore both kinds of
diagrams are used, depending on what the partners found more clearly communicating the
idea (see Figure 8).

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 17 / 334

3 Developer Tier: Design-time

The developer tier groups functionality used to design zApps and in one case help with
designing the security of the platform. These Developer tier components are run outside
the platform with help from software developers and domain specialists.

Figure 9: Developer Tier Components

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 18 / 334

3.1 Data Harmonisation Designer (T5.3)

3.1.1 Overall functional characterisation & Context

This module facilitates the transformation of different forms of data that
are taken as inputs and harmonises the data into formats that can be
used by other ZDMP components. This is achieved through the Data
Harmonisation Designer, which is where the data is restructured from
existing software systems into something that meets the needs of the
ZDMP application, ie transforming data from its source format to its destination format. The
formatting of the data at run-time is managed by the Data Harmonisation Run-Time, where
the data from various sources into the ZDMP required format (see Section 5.1).

This designer models the definition of Manufacturing Maps; ie maps that allow the
transformation and integration of data. It also provides basic functionalities for semantic
homogenisation in a context of heterogeneous data. The developed applications enable a
business analyst driven approach for the automatic linking of organisations’ data schemas
to the reference data model or the target data model needed by another component or
zApp. ZDMP, the Data Harmonisation Designer and the AI-Analytics Designer will use
publicly available manufacturing ontologies as reference data model (from the CREMA
project) so an evolutionary data model can be supported in the form of crowdsourcing
techniques. The Manufacturing Maps will be available in the ZDMP T6.2 Marketplace and
Storage and exported as Transformation Services that are of a valuable use for the T5.4
Process Orchestration component.

The Data Harmonisation Designer component provides a set of functionalities that can be
grouped on the following features:

• Map Designer: Allows the Manufacturing Maps can be generated. A Manufacturing
Map file describes the rules to be executed to transform a specific syntax format A
into format B which could then, for example, be used as part of a process. It will offer
the user the possibility to annotate these maps with additional semantic metadata

• Ontology Management: Where ontological (concepts in OWL2, RDFS) and linked
(RDF) datasets can be managed. It provides functionality for generic data (CRUD)
management of the content stored in its semantic backend in the T6.2 Marketplace

• Data Enrichment and Extraction: Where the AI-Analytics can derive attributes or
features from the data. This includes using statistical properties, data models and
temporal data characteristics to discover internal relationships within the data

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 19 / 334

Their function can be grouped to the following features:

Subtask Subtask description
T53A001
Connect to Database

Priority: Must

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Open filesystem and access the schema of the data source (both for
source and target schemas)
Why: So that the schema can be loaded and, thus, the mappings can be
performed

Acceptance Criteria The schemas (source and/or target) are successfully retrieved

Requirements Filled RQ_0007, RQ_0008, RQ_0116, RQ_0167, RQ_0172, RQ_0185, RQ_0662

T53A002
Read XML

Priority: Must

Who: Data Harmonisation Designer
Where: Anywhere
When: Design Time
What: interprets eg XML schema files
Why: So that the schema can be loaded and, thus, the mappings can be
performed

Acceptance Criteria
The eg XML schema (source and/or target) is successfully interpreted and
retrieved

Requirements Filled
RQ_0044, RQ_0093, RQ_0094, RQ_0389, RQ_0447, RQ_489, RQ_0551, RQ_0610, RQ_0662,
RQ_0686, RQ_0722, RQ_0782

T53A003
Read CSV

Priority: Must

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Interprets CSV schema files
Why: So that the Transformation engine can read the transformation steps
determined in the Map

Acceptance Criteria The CSV schema (source and/or target) is successfully interpreted and retrieved

Requirements Filled
RQ_0044, RQ_0093, RQ_0094, RQ_0389, RQ_0447, RQ_489, RQ_0551, RQ_0610, RQ_0662,
RQ_0686, RQ_0722, RQ_0782

T53A004
Read JSON

Priority: Must

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Interprets JSON schema files
Why: So that the Transformation engine can read the transformation steps
determined in the Map

Acceptance Criteria The JSON schema (source and/or target) is successfully interpreted and retrieved

Requirements Filled
RQ_009, RQ_0010, RQ_0011, RQ0012, RQ_0040, RQ_0044, RQ_0093, RQ_0094, RQ_0159,
RQ_0389, RQ_0447, RQ_489, RQ_0551, RQ_0610, RQ_0662, RQ_0686, RQ_0722, RQ_0782

T53A005
Read TXT

Priority: Must

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Interprets plain text schema files
Why: So that the Transformation engine can read the transformation steps
determined in the Map

Acceptance Criteria
The plain txt schema (source and/or target) is successfully interpreted and
retrieved

Requirements Filled
RQ_0044, RQ_0093, RQ_0094, RQ_0389, RQ_0447, RQ_489, RQ_0551, RQ_0610, RQ_0662,
RQ_0686, RQ_0722, RQ_0782

T53A006
Read XLS

Priority: Must

Who: Data Harmonisation Designer
Where: Anywhere

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 20 / 334

When: Design time
What: Interprets XLS schema files
Why: So that the Transformation engine can read the transformation steps
determined in the Map

Acceptance Criteria The XLS schema (source and/or target) is successfully interpreted and retrieved

Requirements Filled
RQ_0024, RQ_0044, RQ_0093, RQ_0094, RQ_0389, RQ_0447, RQ_489, RQ_0551, RQ_0610,
RQ_0662, RQ_0686, RQ_0722, RQ_0782, RQ_0912

T53A007
Read MySQL

Priority: Must

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Interprets MySQL schema files
Why: So that the Transformation engine can read the transformation steps
determined in the Map

Acceptance Criteria
The MySQL schema (source and/or target) is successfully interpreted and
retrieved

Requirements Filled
RQ_0023, RQ_0027, RQ_0044, RQ_0093, RQ_0094, RQ_0165, RQ_0389,
RQ_0447, RQ_489, RQ_0551, RQ_0610, RQ_0662, RQ_0686, RQ_0722,
RQ_0782

T53A008
Display UI

Priority: Must

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Show Mapping UI

Why: so that the source schema can be displayed and, thus, the mappings can

be performed

Acceptance Criteria The Mapping UI is successfully shown

Requirements Filled RQ_0342, RQ_0373

T53A009
Load Source Schema

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Loads source schema
Why: So that the source schema can be accessed

Acceptance Criteria The source schema is successfully loaded

Requirements Filled
RQ_0015, RQ_0022, RQ_0030, RQ_0116, RQ_0167, RQ_0172, RQ_0185,
RQ_0230, RQ_0709, RQ_0718

T53A010
Display Source
Schema

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time (after T53A009)
What: Display source schema
Why: So that the source schema can be viewed

Acceptance Criteria The source schema is successfully displayed

Requirements Filled RQ_0263, RQ_0658

T53A011
Analyse Source
Schema

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time (After T53A010)
What: Analyses source schema
Why: So that the source schema can be manipulated
When/Where: Design-time in the Data Harmonisation Designer

Acceptance Criteria The source schema is successfully analysed

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 21 / 334

Requirements Filled RQ_0271

T53A012
Connect to ontology

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Connects to domain (or ZDMP) ontology
Why: So that alternative concepts can be suggested for the concepts present in
the source schema

Acceptance Criteria The ontology is successfully connected

Requirements Filled RQ_0274

T53A013
Suggest Semantic
Concepts for Source
Schema

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Suggests alternative (or linked) concepts to the concepts present in the
source schema
Why: So that a crowdsourced domain (or ZDMP) ontology can be populated

Acceptance Criteria Relevant concepts are suggested for a given concept

Requirements Filled RQ_0881, RQ_0921, RQ_0923

T53A014
Display UI

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Show Mapping UI
Why: So that the target schema can be displayed and, thus, the mappings can be
performed

Acceptance Criteria The Mapping UI is successfully shown

Requirements Filled None specified

T53A015
Load Target Schema

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Loads target schema
Why: So that the target schema can be accessed

Acceptance Criteria The target schema is successfully loaded

Requirements Filled RQ_0167, RQ_0172, RQ_0185, RQ_0328

T53A016
Display Target
Schema

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time (after T53A015)
What: Display target schema
Why: So that the target schema can be viewed

Acceptance Criteria The target schema is successfully displayed

Requirements Filled RQ_0167, RQ_0172, RQ_0185, RQ_0328

T53A017
Analyse Target
Schema

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 22 / 334

When: Design time (after T53A016)
What: Analyses target schema
Why: So that the target schema can be manipulated

Acceptance Criteria The target schema is successfully analysed

Requirements Filled RQ_0328

T53A018
Connect to Ontology

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Connects to domain (or ZDMP) ontology
Why: So that alternative concepts can be suggested for the concepts present in
the target schema

Acceptance Criteria The ontology is successfully connected

Requirements Filled RQ_0328

T53A019
Suggest Semantic
Concepts for Target
Schema

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Suggests alternative (or linked) concepts to the concepts present in the
target schema
Why: So that a crowdsourced domain (or ZDMP) ontology can be populated

Acceptance Criteria Relevant concepts are suggested for a given concept

Requirements Filled N/A

T53A020
Connect to the
Storage

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Connect to the Storage with the credentials as directed by the T5.2 Secure
Authentication/Authorisation component
Why: So that the Maps can be read, searched, and filtered after save

Acceptance Criteria The T6.2 Storage is accessible

Requirements Filled RQ_0032, RQ_0085, RQ_0187, RQ_0637

T53A021
Read file

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Read file
Why: So that the Maps can be loaded into the Data Harmonisation Designer
component

Acceptance Criteria The file is successfully read

Requirements Filled RQ_0187, RQ_0832, RQ_0835

T53A022
Search Map

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Search map
Why: So that the Maps can be searched into the Storage component

Acceptance Criteria The list of maps resulted after the search matches the searching criteria specified

Requirements Filled RQ_0217

T53A023 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 23 / 334

Filtering in the Storage Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Apply filters
Why: So that the Maps stored in the Data Storage can be filtered according to
user specified criteria

Acceptance Criteria The list of maps is filtered out with the specified criteria

Requirements Filled
RQ_0335, RQ_0712, RQ_0713, RQ_0714, RQ_0771, RQ_0772, RQ_0773, RQ_0774, RQ_0832,
RQ_0835

T53A024
Preview Map

Priority: Should

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Preview map
Why: So that the Maps can be graphically previewed before loading into the Data
Harmonisation Designer component

Acceptance Criteria The map is graphically viewed by the user

Requirements Filled None specified

T53A025
Annotate Map

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Annotate map with metadata
Why: So that the Maps can be searched and filtered with this metadata as
parameters

Acceptance Criteria
The file is successfully annotated, and the metadata is stored along with the map
file

Requirements Filled RQ_0032

T53A026
Publish Map

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: The map is published to a computer readable format
Why: So that the Maps can be wrapped and become an executable service

Acceptance Criteria The file is successfully published and accessible

Requirements Filled RQ_0032, RQ_0085, RQ_0637

T53A027
Persist Map

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Save the map in the Storage
Why: So that the Maps can be re-used, retrieved, removed, searched, and
filtered

Acceptance Criteria The file is successfully persisted in the Storage

Requirements Filled RQ_0032, RQ_0085, RQ_0637

T53A028
Search Map

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 24 / 334

When: Design time
What: Search map
Why: So that the Maps can be searched into the Storage component

Acceptance Criteria The list of maps resulted after the search matches the searching criteria specified

Requirements Filled RQ_0655, RQ_0656, RQ_0657, RQ_0658

T53A029
Delete Map

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Remove map
Why: Checks that the persisted Maps in the Storage can be removed from it

Acceptance Criteria The selected map(s) is successfully removed from the T6.2 Storage

Requirements Filled RQ_0032, RQ_0085, RQ_383, RQ_0637

T53A030
Annotate Service

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Annotate map for publication
Why: So that the to-be deployed Map can be easily found in the Storage

Acceptance Criteria The active map is successfully annotated

Requirements Filled None specified.

T53A031
Create Service

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Create self-executing service
Why: So that the deployed Map can be executed as a stand-alone service

Acceptance Criteria
The transformation service is successfully created from the active map, together
with its annotations

Requirements Filled None specified.

T53A032
Deploy Service

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Create Docker package
Why: So that the deployed Map can be executed and scalable if necessary, as a
stand-alone service

Acceptance Criteria
The active map, together with its annotations, is successfully packaged as Docker
container

Requirements Filled None specified

T53A033
Connect to the
Storage

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Connect to Marketplace with the credentials as directed by the T5.2
Secure Authentication/Authorisation component
Why: So that the Transformation Services (ie the deployed maps) can be
published

Acceptance Criteria The Marketplace is accessible

Requirements Filled RQ_0032, RQ_0085, RQ_0637

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 25 / 334

T53A034
Publish Deployed Map

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time (After T53A032)
What: Publish deployed map (ie transformation service)
Why: So that the Transformation Service can be sold to ZDMP Users and re-
used within eg the Process Orchestration

Acceptance Criteria The service is successfully published in the Marketplace

Requirements Filled RQ_0032, RQ_0085, RQ_0637

T53A035
Get Related Data

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Obtain data with internal relationships to a given concept passed as
parameter
Why: So that the Data Harmonisation Designer can make use of the "wisdom of
the crowd" for developing the maps

Acceptance Criteria A set of relevant data with internal relationships is made available

Requirements Filled
RQ_0880, RQ_0881, RQ_0885, RQ_0921, RQ_0923, RQ_0966 RQ_0984, RQ_0985, RQ_1011,
RQ_1037, RQ_1037, RQ_1040, RQ_1054, RQ_1055

T53A036
Get Routine

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Obtain the internal relationships between a set of given concepts passed
as parameters
Why: So that the Data Harmonisation Designer can make use of the "wisdom of
the crowd" for developing the maps

Acceptance Criteria A set of internal relationships is made available

Requirements Filled
RQ_0880, RQ_0881, RQ_0885, RQ_0921, RQ_0923, RQ_0966 RQ_0984, RQ_0985, RQ_1011,
RQ_1037, RQ_1037, RQ_1040, RQ_1054, RQ_1055

T53A037
Add Related Data

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Add a new concept that is linked to a given concept passed as parameter
Why: So that the Data Harmonisation Designer can provide feedback to the
"wisdom of the crowd" for developing future maps

Acceptance Criteria The ontology is updated with the provided content

Requirements Filled RQ_0032, RQ_0085, RQ_0637, RQ_0880, RQ_0881, RQ_0885, RQ_0921, RQ_0923

T53A038
Add Routine

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Add a new link between two given concepts, passed as parameters
Why: So that the Data Harmonisation Designer can provide feedback to the
"wisdom of the crowd" for developing future maps

Acceptance Criteria The ontology is updated with the provided content

Requirements Filled RQ_0032, RQ_0085, RQ_0637, RQ_0880, RQ_0881, RQ_0885, RQ_0921, RQ_0923

T53A039
Update Related Data

Priority: Must

Description

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 26 / 334

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time (after T53A035)
What: Update a concept that is linked to a given concept passed as parameter
Why: So that the Data Harmonisation Designer can provide feedback to the
"wisdom of the crowd" for developing future maps

Acceptance Criteria The ontology is updated with the provided content

Requirements Filled RQ_0032, RQ_0085, RQ_0637, RQ_0880, RQ_0881, RQ_0885, RQ_0921, RQ_0923

T53A040
Update Routine

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time (after T53A036)
What: Update a given link between two concepts, passed as parameters
Why: So that the Data Harmonisation Designer can provide feedback to the
"wisdom of the crowd" for developing future maps

Acceptance Criteria The ontology is updated with the provided content

Requirements Filled RQ_0032, RQ_0085, RQ_0637, RQ_0880, RQ_0881, RQ_0885, RQ_0921, RQ_0923

T53A041
Get Concept

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Get concepts from the ontology
Why: So that the Data Harmonisation Designer can make use of the ZDMP
Ontology for developing the maps

Acceptance Criteria The ZDMP Ontology provides with the requested concepts

Requirements Filled RQ_0966

T53A042
Add Concept

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Add concepts to the ontology
Why: So that the Data Harmonisation Designer can make use of the ZDMP
Ontology for developing the maps

Acceptance Criteria The ZDMP Ontology is updated with new concepts

Requirements Filled RQ_0032, RQ_0085, RQ_0637

T53A043
Update Concept

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time (after T53A041)
What: Update concepts in the ontology
Why: So that the Data Harmonisation Designer can make use of the ZDMP
Ontology for developing the maps

Acceptance Criteria The ZDMP Ontology is updated with new metadata about existing concepts

Requirements Filled RQ_0032, RQ_0085, RQ_0637

T53A044
Delete Concept

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time (after T53A041)
What: Remove concepts from the ontology
Why: So that the Data Harmonisation Designer can update the ZDMP Ontology
for future developing the maps

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 27 / 334

When/Where: Design-time in the Data Harmonisation Designer

Acceptance Criteria The ZDMP Ontology is updated with the removal of existing concepts

Requirements Filled RQ_0032, RQ_0085, RQ_0637

T53A045
Reasoning

Priority: Must

Description

Who: Data Harmonisation Designer
Where: Anywhere
When: Design time
What: Reason
Why: So that the Data Harmonisation Designer can make use of the ZDMP
Ontology for developing the maps

Acceptance Criteria
The ZDMP Ontology provides with a set of reasoned objects as per the
parameters received

Requirements Filled RQ_0047, RQ_0054, RQ_0098, RQ_0120, RQ_0140

Figure 10: Data Harmonization Designer Functions

3.1.2 Workflows

The following sub-sections describe the sequence diagrams of the Data Harmonisation
Designer component.

 Read Data Sources

This feature provides the capability to read a set of types of data sources that will be used
when performing the mapping task. Figure 11 shows the sequence diagram of this feature.

The main steps/functionalities are as follows:

• Connect to Data Source

• Read XML

• Read CSV

• Read JSON

• Read TXT

• Read XLS

• Read MySQL Database

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 28 / 334

Figure 11: Read data sources sequence diagram

 Read Source Schema and Read Target Schema

This feature provides the capability to read the source and the target schemas that will be
used when performing the mapping task. Figure 12 shows how the Data Harmonisation
component will read the source data, and Figure 13 shows how it will read the target data.

The main steps/functionalities are as follows:

• Display UI

• Load Source/Target Schema

• Display Source/Target Schema

• Analyse Source/Target Schema

• Connect to Ontology

• Suggest Semantic Concepts for Source/Target Schema

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 29 / 334

Figure 12: Read Source Schema Sequence Diagram

Figure 13: Read Target Schema Sequence Diagram

 Manage Maps

This feature provides the capability to read, retrieve, store, and delete a Manufacturing
Map from the Marketplace. Each of these capabilities have an associated sequence
diagram, Figure 14 covers the reading of a map, Figure 15 covers the retrieving of a map,
Figure 16 covers storing of a map, and Figure 17 covers deleting a map.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 30 / 334

The main steps/functionalities and their subtask ID are as follows:

• Read Map

• Connect to Storage (see function T53A020)

• Read File (see function T53A021)

• Retrieve Map

• Connect to Storage (see function T53A020)

• Search Map (see function T53A022)

• Filtering in Storage (see function T53A023)

• Preview Map (see function T53A024)

• Store Map

• Connect to Storage (see function T53A020)

• Annotate Map (see function T53A025)

• Serialise Map (see function T53A026)

• Persist Map (see function T53A027)

• Delete Map

• Connect to Storage (see function T53A020)

• Search Map (see function T53A028)

• Delete Map (see function T53A029)

Figure 14: Read Map Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 31 / 334

Figure 15: Retrieve Map Sequence Diagram

Figure 16: Store Map Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 32 / 334

Figure 17: Delete Map Sequence Diagram

 Deploy and Publish a Map

These features provide the capability to deploy and publish a map after it has been
generated by the Business Analyst. The main steps/functionalities are as follows:

• Deploy Map

• Annotate Service (see function T35A030)

• Create Service (see function T35A031)

• Deploy Service (see function T35A032)

• Publish Map

• Connect to T6.2 ZDMP Marketplace (see function T35A033)

• Publish Deployed Map (see function T35A034)

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 33 / 334

Figure 18: Deploy Map Sequence Diagram

Figure 19: Publish Map Sequence Diagram

 Data Enrichment & Extraction

This feature provides the capability to access the machine learning routines functionality
that the Data Orchestration Designer is offering to the Business Analyst when generating
their Manufacturing Maps. There are several sequence diagrams associated with this
feature. Figure 20 shows getting related data or routines, Figure 21 shows adding related

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 34 / 334

data, Figure 22 shows adding new routines, Figure 23 shows updating related data, and
Figure 24 shows updating routines.

The main steps / functionalities are as follows:

• Get Related Data (see function T35A035)

• Get Routine (see function T35A036)

• Add Related Data (see function T35A037)

• Add Routine (see function T35A038)

• Update Related Data (see function T35A039)

• Update Routine (see function T35A040)

Figure 20: Get the Routines Sequence Diagram

Figure 21: Add Related Data Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 35 / 334

Figure 22: Add Routine Sequence Diagram

Figure 23: Update Related Data Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 36 / 334

Figure 24: Update Routines Relationship Sequence Diagram

 Manage Ontology

This feature provides the capability to access the domain ontology functionality that the
Data Harmonisation Designer is offering to the Business Analyst when generating their
Manufacturing Maps. This feature has five associated sequence diagrams. Figure 25
shows getting a concept, Figure 26 shows adding a concept, Figure 27 shows updating a
concept, Figure 28 shows deleting a concept and Figure 29 shows the reasoning
sequencing diagram.

The main steps/functionalities are as follows:

• Get Concept (see function T35A041)

• Add Concept (see function T35A042)

• Update Concept (see function T35A043)

• Delete Concept (see function T35A044)

• Reasoning (see function T35A045)

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 37 / 334

Figure 25: Get Concept Sequence Diagram

Figure 26: Add Concept Diagram

Figure 27: Update Concept Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 38 / 334

Figure 28: Delete Concept Diagram

Figure 29: Reasoning Sequence Diagram

3.1.3 Additional Issues

Additional issues have appeared after the description of the architecture.

Issue Description Next Steps Lead
(Rationale)

Performance
Issues

The following requirements with a “must“-priority
were targeted at the task 5.3, but there are
concerns about performance relating to the
following requirements:
RQ_0036, RQ_0082, RQ_0090, RQ_0110,
RQ_0118, RQ_0132, RQ_0136, RQ_0150

Discuss with
requirement
providers who to
solve the issue

T5.3 Data
Harmonisation

Subtasks
without
specified
fulfilled
requirements

The following subtasks do not fulfil specific
requirements, but are there to fulfil a more
general purpose:
T53A014, T53A024, T53A030, T53A031,
T53A032

Ensure that all
the tasks have
requirements

T5.3 Data
Harmonisation

Figure 30: Data Harmonization Designer Issues

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 39 / 334

3.2 Orchestration Designer (T5.4)

The interaction between the Orchestration Designer and other
components of the ZDMP platform (Orchestration Runtime, Monitoring
and Alerting, Process Engine, Marketplace, Storage, etc) will be
facilitated using the T6.4 Service and Message Bus. The Monitoring
and Alerting provides alerts based on a set of incoming data and rules.

3.2.1 Overall functional characterisation & Context

The Orchestration Designer is responsible for allowing users to model multiple
manufacturing workflows for orchestrating the various assets available within a
collaborative framework.

The tool will be a reactive, extensible, and an online workspace supporting the design or
modifications of BPMN-like models and be callable by APIS for use in zApps where
process design and orchestration is appropriate.

3.2.2 Functions / Features

The Orchestration Designer component provides the following set of functionalities:

• BPMN 2.0 Modelling and Rendering Service: This service provides the means of
rendering and modelling a process in BPMN format. It connects to the Storage
component for saving and retrieving a process model for designing and editing. At
runtime, the process model is executed via the Process Engine

• Toolbox elements: The toolbox contains the list of all BPMN elements, filtered by
elements attachable to the selected diagram element, if any. This includes events,
gateways, and tasks

• Process explorer: Allows the user to create/open/browse all stored diagrams and
shows a preview of each one

• Properties panel: The properties panel appears when users selects an existing
element in the current diagram. Depending on the type of elements, a distinct set of
properties appears, so user can set their values

• Status panel: This panel lists errors in the current diagram such as required values
not set or missing information. The User can click on each item to get more
information and automatically select the element which has the problem

• Marketplace explorer: Allows the user to use an existing asset/service from the
marketplace. This is visually represented by a service task and can be added to a
diagram as part of the flow. The metadata for each asset/service is used by the
designer to ask for required attributes (mappings and other data required by the
service call) by using the properties panel

• Instance explorer: Allows the user to interact with the orchestration engine, to
deploy process models and get the list of running instances. It also allows the user all
instance related management, like start/stop/suspend/resume instances

The functions can be grouped to the following features which have to be realised:

Subtask Subtask description

T54A001
Process Explorer

Priority: Must

Who: Developer
What: Open Process Explorer to browse available processes
Why: To provide already created processes and services to the orchestration
designer

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 40 / 334

When: During designing of a process
Where: In the process design and the Developer Tier.

Acceptance Criteria User received a list of the process models stored on ZDMP-Store

Requirements Filled Cross App Functionality – see Additional Issues

T54A002
Search/Filter process
models

Priority: Must

Who: Designer
What: Search/filter process models
Why: So the user can find a process to be added to the orchestrator
When: During design of a process
Where: In the process design and the Developer Tier

Acceptance Criteria User can search existing process models

Requirements Filled Cross App Functionality – see Additional Issues

T54A003
Create/Open existing
process

Priority: Must

Who: Designer
What: Create a new process/Open existing process
Why: To access previously created processes or create new ones
When: To start designing of a process
Where: In the process design and the Developer Tier.

Acceptance Criteria User can create a new process model and can open an existing one

Requirements Filled Cross App Functionality – see Additional Issues

T54A004

Save process model

Priority: Must

Who: Designer
What: Save process model changes to local storage or platform storage
Why: Automatically save changes made by the user to the current process model
to limit the loss of work
When: During process design
Where: In process designer and the Developer Tier

Acceptance Criteria Process model is automatically saved while user does changes. User can reload
the designer and his changes are there

Requirements Filled Cross App Functionality – see Additional Issues

T54A005
Diagram – connect
figures

Priority: Must

Who: Designer
What: Drag and drop elements and connect them together

Why: Allow the user to design the BPMN process model

When: During process design

Where: In process designer and the Developer Tier

Acceptance Criteria User can drag and drop elements from the toolbox and connect them together to
create the process model results in a valid BPMN model

Requirements Filled Cross App Functionality – see Additional Issues

T54A006
Update element
common properties

Priority: Must

Who: Designer
What: Update common element properties by using properties panel

Why: To allow customisation of the connections to components or zApps

When: During process design

Where: In process designer and the Developer Tier

Acceptance Criteria Attributes are stored as they are set by the user. Different attributes appear
depending on which element in the diagram is selected. Common attributes such
as name or position can be set using the properties panel

Requirements Filled Cross App Functionality – see Additional Issues

T54A007
Marketplace explorer

Priority: Must

Who: Designer
What: Allow the user to add a service task from the marketplace to the current
diagram

Why: Use a service/asset from the marketplace as part of the process model
being designed

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 41 / 334

When: During process design

Where: In process designer and the Developer Tier

Acceptance Criteria User drags and drops the service task element and the marketplace explorer
appears, where user can browse/select the service he wants to use

Requirements Filled Cross App Functionality – see Additional Issues

T54A008
Validate process

Priority: Must

Who: Designer
What: Provides the list of errors/attributes that must be set by the user

Why: Ensure the process model and all its elements have all required input

When: During process design

Where: In process designer and the Developer Tier

Acceptance Criteria User gets the list of errors/missing required data. Clicking on each item in the list,
selects the element in the diagram, highlighting the missing attributes or the
wrong values.

Requirements Filled Cross App Functionality – see Additional Issues

T54A009
Make valid
connections

Priority: Must

Who: Designer
What: Allow only certain toolbox elements to be connected together

Why: Following BPMN specification, certain elements cannot be connected, such
as an end event and a message start.

When: During process design

Where: In process designer and the Developer Tier

Acceptance Criteria User cannot create invalid connections in the process model

Requirements Fields Cross App Functionality – see Additional Issues

T54A010

Gateway condition
designer

Priority: Must

Who: Designer
What: Allows the user to create condition expressions that will be evaluated at
runtime
Why: Create conditions that will affect the flow in runtime

When: During process design
Where: In the process designer and the Developer Tier

Acceptance Criteria User can create the expression that will affect the process flow in runtime.
Expression can use mathematical functions or generic code functions (such as
Substr, Regular expressions, etc)

Requirements Fields Cross App Functionality – see Additional Issues

T54A011
Message pub/sub
designer

Priority: Must

Who: Designer
What: Allows the user to send a message through the service bus (throw), or wait
for a specific one (catch)

Why: Provide message support as part of the BPMN specification

When: During process design (without connection to message bus)

Where: In process designer and the Developer Tier

Acceptance Criteria User can set properties on the sent message or for the message to subscribe to

Requirements Fields Cross App Functionality – see Additional Issues

T54A012
Remove selected
element

Priority: Must

Who: Orchestration Designer
What: Remove the selected element
Why: Standard editing function in designers

When: During process design
Where: In Process Designer and the Developer Tier

Acceptance Criteria The selected element is deleted

Requirements Fields Cross App Functionality – see Additional Issues

T54A013
Delete process model

Priority: Must

Who: Orchestration Designer
What: Delete process model

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 42 / 334

Why: Allow user to delete process models

Acceptance Criteria Process model in storage is deleted and cannot be opened anymore

Requirements Fields Cross App Functionality – see Additional Issues

T54A014
Deploy process
model

Priority: Must

Who: User
What: Deploy process model to process engine in the platform on to the
marketplace
Why: The engine can be executed on the process by any other privileged user

When: During process design
Where: In process designer and the Developer Tier

Acceptance Criteria The process is executed in the process engine

Requirements Fields Cross App Functionality – see Additional Issues

T54A015

Get list of process
instances

Priority: Must

Who: User
What: Get the list of process instances
Why: Enable a user to assess which processes instances are available

When: During process design
Where: In process designer and the Developer Tier

Acceptance Criteria User can get the list of running instances

Requirements Fields Cross App Functionality – see Additional Issues

Figure 31: Orchestration Designer Functions

3.2.3 Workflows

This section highlights the user interaction and the interaction of the component in the
single function.

 Process explorer

Read operations with the Storage component, for retrieving and filtering process models.

This step includes:

• Connect to Storage

• Read Process Model

• Search Process Model

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 43 / 334

Figure 32: Read operations through Storage

 Create / Save process

This feature creates the initial BPMN model ready for user interaction. The steps include:

• Connect to Storage

• Create Process Model

All changes from the user are automatically saved/persisted to the Storage by using the
Process Model API.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 44 / 334

Figure 33: Create / Save process model

 Deploy process

Deploy process allows the user to send the process model to the process engine, so it can
be executed once the user has finished designing/drawing it.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 45 / 334

Figure 34: Deploy process model

 Validate process

Orchestration Designer actively keeps validating the process model on each user
interaction to provide real time messages about missing information or invalid state for the
current process model.

Figure 35: Validate process model

3.2.4 Additional Issues

Additional issues have appeared after the description of the architecture.

Issue Description Next Steps Lead
(Rationale)

General
component

Due to the mentioned Cross-App functionality,
these functions above do not match any specific
requirements as this component has very
general functionality that could be used in many

See
Orchestration
Runtime

T5.4
Orchestration
Runtime

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 46 / 334

of the zApps. This is discussed more in the
Orchestration Runtime component.

Figure 36: Additional Issues Orchestration Designer

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 47 / 334

3.3 AI-Analytics Designer (T5.6)

3.3.1 Overall functional characterisation & Context

The AI-Analytics Designer component provides the ability to define
machine learning models from historical data, in order to detect and/or
predict any defects in the production process that leads to delay or
inconsistency in the delivery of the further products. The machine
learning models are built using analytic algorithms based on the
statistical-machine-learning linear-algebra libraries. A diagram regarding the AI-Analytics
Designer component and its interactions can be found in the Architecture document.

3.3.2 Functions / Features

• Data extraction: Historical data from the analysed processes need to be used to
discover trends and patterns to build machine learning models. Therefore, the
appropriate data needs to be acquired, using different formats, from diverse sources
via Historic API

• In-memory data storage: All data extracted from historical data sources are stored
in structures built in memory – as strings composed by keys and values – with exact
consistency semantics and transactions, being thus prepared for algorithms training

• Supervised algorithms development: This function deals with machine learning
models creation with a supervised learning process. The algorithm iteratively makes
predictions on the training data and is corrected by this engine. Learning stops when
the algorithm achieves an acceptable level of performance

• Unsupervised algorithms development: This feature is building machine learning
models in which the learning process is not supervised. Algorithms are left to their
own devices to discover and present the interesting structure in the data

• Models validation: This is used to validate a model internally by estimation of the
model performance without having to sacrifice a validation split

• Models storing: This feature acts as a repository used to save binary machine
learning models and to load from this repository for future use in validation process or
for transform in objects for production

• Models conversion: Also called productionising, this function is used to prepare the
machine learning models for production by transforming them into either a Plain Old
Java Object (POJO) or a Model Object, Optimised (MOJO)

• Models upload: Using the Marketplace API, this feature uploads models, scripts,
and libraries on the Marketplace and gets specific information on other items

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
T56A001
Connect to data source

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Opens filesystem of the data source and access the database
connections
Why: So that the schema can be loaded and, thus, the data extraction
can be performed

Acceptance Criteria The schemas (source and/or target) are successfully retrieved

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 48 / 334

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A002
Read SQL database

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Reads SQL database schemas and tables
Why: So that the Historic API can read the records from database

Acceptance Criteria The database records are successfully retrieved

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A003
Read JSON

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Interprets JSON schema files
Why: So that the Historic API can read the data

Acceptance Criteria The JSON schema is successfully interpreted and retrieved

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A004
Read XML

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Interprets XML schema files
Why: So that the schema can be loaded and, thus, the data extraction
can be performed

Acceptance Criteria The XML schema is successfully interpreted and retrieved

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A005
Read CSV

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Interprets CSV schema files
Why: So that the Historic API can read the data

Acceptance Criteria The CSV schema is successfully interpreted and retrieved

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A006
Transform in K/V

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Extracts values from records and pair them with keys
Why: Store strings as key-value pairs

Acceptance Criteria The Key/Value strings are successfully created

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A007 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 49 / 334

Display UI Who: AI-Analytics Designer
Where: Anywhere
When: Design time

What: Displays data retrieved and K/V strings created
Why: So that the user can validate and save data extracted

Acceptance Criteria The data is successfully displayed

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A008
Write K/V

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Stores in memory structures with K/V strings
Why: So that the in-memory structured can be used in models
training

Acceptance Criteria The in-memory structures successfully created

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A009
Build Supervised
Algorithm

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Creates supervised algorithms
Why: So that the supervised machine learning model can be trained

Acceptance Criteria The supervised algorithms successfully created

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A010
Train Supervised
Algorithm

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Runs supervised algorithms with historic data.
Why: So that algorithm makes predictions iteratively on the training
data and is corrected by this engine

Acceptance Criteria The algorithm achieves an acceptable level of performance

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A011
Validate Model

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Runs the trained machine learning model to estimate the
performance.
Why: So that a model validation at a design time is efficient than ones
at a runtime

Acceptance Criteria The performance level of the machine learning model is confirmed

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A012 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 50 / 334

Build Unsupervised
Algorithm

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Creates unsupervised algorithms
Why: So that the unsupervised machine learning model can be
trained

Acceptance Criteria The unsupervised algorithms successfully created

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A013
Train Unsupervised
Algorithm

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Runs unsupervised algorithms with historic data
Why: So that the learning process is not supervised, thus algorithms
are left to their own devices to discover patterns in the data

Acceptance Criteria The algorithm discovers patterns successfully

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A014
Display Model Validation

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Displays graphical representations of data validated by the
machine learning model
Why: So that the model performance is verified

Acceptance Criteria The graphical representation of data validated is successfully
displayed

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A015
Save Model

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Saves the binary machine learning model in the repository
Why: So that the model can be used later for validation or in
production

Acceptance Criteria The model is successfully saved.

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A016
Load Model

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Loads the binary machine learning model from the repository
Why: So that the model is used for validation or for productionising

Acceptance Criteria The model is successfully loaded for validation / productionising

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A017
Convert to POJO

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 51 / 334

When: Design time
What: Transforms a machine learning model in a Plain Old Java
Object (POJO)
Why: So that the POJO can be used for production, at runtime

Acceptance Criteria POJO successfully created

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A018
Convert to MOJO

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Transforms a machine learning model in a Model Object,
Optimised (MOJO)
Why: So that the MOJO can be used for production, at runtime

Acceptance Criteria POJO successfully created

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A019
Deploy model

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Deploys POJO or MOJO objects using Deploy API
Why: So that the POJO and MOJO object can be used by other
components in ZDMP

Acceptance Criteria POJO / MOJO successfully deployed.

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A020
Upload model

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Uploads a machine learning model to Marketplace, using
Marketplace API
Why: So that the model can be used by other developers

Acceptance Criteria Model successfully uploaded

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A021
Upload Script

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Uploads a Python script to Marketplace, using Marketplace API
Why: So that the script can be used by other developers

Acceptance Criteria Script successfully uploaded

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56A022
Upload Library

Priority: Must

Who: AI-Analytics Designer
Where: Anywhere
When: Design time
What: Uploads a library to Marketplace, using Marketplace API
Why: So that the script can be used by other developers

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 52 / 334

Acceptance Criteria Script successfully uploaded.

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

Figure 37: AI-Analytics Designer Functions

3.3.3 Workflows

The following sub-sections describe the sequence diagrams of the AI-Analytics Designer
component.

 Connect to data source

The following diagram explains this function and the necessary interactions with other
components.

Figure 38: Connect to data source sequence diagram

 Read SQL Database

The following diagram explains this function and the necessary interactions with other
components.

Figure 39: Read SQL Database

 Read NoSQL Data

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 53 / 334

Figure 40: Read NoSQL Data sequence diagram

 Transform, display, and store K/V

The following diagram explains this function and the necessary interactions with other
components.

Figure 41: Transform, display and store K/V sequence diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 54 / 334

 Build, train and validate supervised models

The following diagram explains this function and the necessary interactions with other
components.

Figure 42: Build, train and validate supervised models sequence diagram

 Build, train and validate unsupervised models

The following diagram explains this function and the necessary interactions with other
components.

Figure 43: Build, train and validate unsupervised models sequence diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 55 / 334

 Save and load models

The following diagram explains this function and the necessary interactions with other
components.

Figure 44: Save and load models sequence diagram

 Productionising and deploy models

The following diagram explains this function and the necessary interactions with other
components.

Figure 45: Productionising and deploy models sequence diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 56 / 334

 Upload models, scripts, and libraries

The following diagram explains this function and the necessary interactions with other
components.

Figure 46: Upload models, scripts, and libraries sequence diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 57 / 334

3.4 Applications Builder (T6.1)

3.4.1 Overall functional characterization & Context

The application builder is a HTML / CSS / JS based web frontend that
enables developers to build a basic infrastructure of zApps using drag
and drop components.

These drag and drop components are already linked with APIs provided
by other technical components and include calls and bindings to ZDMP
services. This enables to accomplish certain basic functionalities that
every app needed including notifications, error reporting, sign up forms and dashboards for
data visualization, etc.

These elements and functionalities that can be added to such zApps and services are
described as follows:

• Error Reporting: Where errors in ZDMP Assets are recognised and for
troubleshooting reasons reports are forwarded to the administration area of the
Secure Business Cloud. There, developers can examine the error reports to react
quickly with bug fixes. Error Reports consist of information about the sender, client
operating system, application, time, and the error itself (eg exception stacktrace).

• User Authorisation and Authentication: The user can register or login to ZDMP
with the function easily. A UI is provided with a connection to the security, which
manages the registration and login process. For the registration, the user enters a
valid email address, first name, and last name. The security component then takes
over and replies with a confirmation email to the entered email address, as double-
opt in confirmation by the email user is necessary to comply with GDPR. In the case
of a login, only the user credentials (username and password) are necessary. Again,
the security component takes over for the verification of the credentials and responds
with granted or denied access.

• Multi Language Support: Internationalization is a major feature every app needs to
support. In this, the user can switch languages in any ZDMP app. Also, a resource
editor (Translator) will be provided, which shows all strings in a default language
(English) that can then be translated into any language the user speaks or be
switched to any language that is already provided. After translation has been
performed, the user can request to add the translation to the official application. Then
it depends on the developer if the new translation is accepted or declined.

• Application Logging: Logging is a default debugging mechanism used during
development of an app as well as at runtime for bug-fixing. With this, internal
processes are logged and saved to an additional logfile. This file then can give the
developer hints about possible error messages and eases troubleshooting.
Information in the log can be displayed by a view in the client application.

• Notification Template: With this, developers can provide the functionality to raise
notifications, to make users aware of relevant information, depending on the user
management system of the ZDMP security component

• Automatic Updates: Mechanism used to maintain zApps after they are development
and uploaded on Marketplace. This provides functionality of automatic updating apps
after bug fixes and extension in features by the zApp developer

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 58 / 334

When the developer is finished, a fully functional zApp will be created, then uploaded to
the Secure Business Cloud. After this process the new zApp can be rolled out to clients /
users. This component is a starting point for zApp developers, having a reason for
programming a zApp for problems that are not solvable out of the box. By creating custom
functionalities, the developer will provide value to users / customers through a zApp. The
zApp template created by the app builder is expected to make development easier and
faster.

A zApp will be composed of following UI Elements and templates:

• Provide UI Elements: Various UI elements are provided in the appbuilder to be used
by developers. These elements come with its default properties but are also
customisable for its respective purpose. This includes charts and diagrams that can
be data-bound to ZDMP services (zAssets), as well as an “About” page with
information and informative links.

• Provide UI Templates: Appbuilder provides UI Templated which are compositions of
UI elements from the UI Element Repository. Each template appears as a single UI
element but is composed of several UI predefined elements. A lightweight example of
a UI template is a login form, which is composed of a grid, textbox, password-textbox,
and buttons.

• Provide Behaviour Elements: Behaviour elements provide default behaviours for
activities, which are related to UI interactions. Those behaviours are easy to integrate
and applicable for eg forms, downloads, registration, notifications, etc.

• Provide Behaviour Templates: Behaviour template consists of lined up behaviours
that are processed synchronously. Lined up behaviours ease the use of handling
events and supports developers with additional default events.

• Provide Holistic Templates: Holistic templates provided by appbuilder unite UI
templates and behaviour templates. Those templates include logic to manage user
interactions automatically, eg a zApp template that already includes error
management, contact forms with default mail templates, etc

3.4.2 Functions / Features

There function can be grouped to the following features which have to be implemented:

Subtask Subtask description

T61A001
Get List of Stored
Configurations

Priority: Must

Who: zApps Developer

When: Design time while developing zApps and service, runtime in ZDMP
assets

Where: Anywhere
What: Lists existing SDK configuration files, getting their names, detail on
functionality, version, etc.

Why: Browse existing configurations to model the SDK

Acceptance Criteria Invoker got a structured list of configurations

Requirements filled RQ_0111, RQ_0194, RQ_0247, RQ_0319

T61A002
Get zApps APIs

Priority: Must

Who: zApps Developer

When: Design time while developing zApps and service, runtime in ZDMP
assets with a valid access token

Where: Anywhere
What: Retrieves the APIs used by the selected zApp
Why: Make use of the APIs

Acceptance Criteria Invoker got APIs definition and description

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 59 / 334

Requirements filled RQ_0194, RQ_0247

T61A003
Get ZDMP Asset APIs
and Manifests

Priority: Must

Who: zApps Developer

When: Design time in the app builder

Where: Design time while developing zApps and service, runtime in ZDMP
assets with a valid access token

 What: Retrieves the API and manifest files for the selected ZDMP asset
Why: Make use of APIs and manifests

Acceptance Criteria Invoker got API and manifest definition and description

Requirements filled RQ_0111, RQ_0161, RQ_0219

T61A004

Get Data Model
definitions

Priority: Must

Who: zApps Developer

When: Design time while developing zApps and service, runtime in ZDMP
assets with a valid access token

Where: Anywhere
What: Retrieves APIs and manifest files for the selected data model /
design pattern
Why: Make use of APIs and manifests

Acceptance Criteria Invoker got API and manifest definition and description

Requirements filled RQ_0111, RQ_0161, RQ_0219

T61A005

Get Configuration

Priority: Must

Who: zApps Developer

When: Design time while developing zApps and service

Where: In app builder
 What: Retrieves data for the selected configuration file stored in the Data

Storage
Why: Use data for configuration of the SDK, Process Designer or Studio

Acceptance Criteria Invoker got the selected Configuration information and its description

Requirements filled RQ_0111, RQ_0194, RQ_0247, RQ_0319

T61A006

Retrieve Composition
data

Priority: Must

Who: zApps Developer

When: Design time while developing zApps and service

Where: In app builder
What: Submits a set of APIs and Manifests describing the services, and
particularly a manifest that describes how the services should be composed
Why: To provide all information needed for the zApp build

Acceptance Criteria zApp Composer received the set of APIs and Manifests corresponding to the zApp
being developed

Requirements filled RQ_0161, RQ_0194, RQ_0219

T61A007
Validate
Dependencies

Priority: Must

Who: zApp Composer

When: Design time while developing zApps and service

Where: In app builder
What: Analyses received data corresponding to the development of a zApp and
check the dependencies of the various involved modules
Why: To ensure all information needed for performing the zApp build is available

Acceptance Criteria All dependencies of the received modules are included and accessible, whether
using local ZDMP repositories (Data Storage, ZDMP-Store, Developer
Engagement Hub) or remote (internet, local machine uploading)

Requirements filled RQ_0111, RQ_0161, RQ_0194, RQ_0219, RQ_0247

T61A008

Structure the Build
Manifest

Priority: Must

Who: zApp Composer

When: Design time while writing manifest for zApps and service

Where: In app builder
What: Ensure that the Build manifest complies to a set of process steps that are

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 60 / 334

meaningful
Why: To ensure the process steps needed for performing the build make sense

and are listed in an appropriate way

Acceptance Criteria zApp Composer returns success on the analysis of the zApp Build Manifest

Requirements filled RQ_0111, RQ_0161, RQ_0219

T61A009
Create Error Report

Priority: Must

Who: Application Builder, Asset

When: Run time in zApps when a bug occurs in live app

Where: In zApps
What: Uncaught exceptions are intercepted and afterwards transformed in a
readable format
Why: To increase readability of error reports

Acceptance Criteria The result of the creation should be a valid report model, which can be parsed
into a valid JSON format

Requirements filled RQ_0161, RQ_0179, RQ_0194, RQ_0219

T61A010
Send Error Report
Automatically

Priority: Must

Who: Application Builder, Secure Business Cloud
When: Run time in zApps when a bug occurs in live app
Where: In zApps
What: Errors are submitted to the Secure Business Cloud Backend to inform the
developer about such errors

Why: To increase the quality of ZDMP-Apps in the Secure Business Cloud

Acceptance Criteria An error report is sent to the Secure Business Cloud backend and can be viewed
there

Requirements filled RQ_0161, RQ_0179, RQ_0194, RQ_0219

T61A011
Send Error Report
Manually

Priority: Must

Who: Application Builder, Secure Business Cloud
When: Run time in zApps when a bug occurs in live app
Where: In zApps
What: Errors are submitted to the Secure Business Cloud Backend containing
the email address of the user as a contact person in order to inform the developer
about such errors
Why: To increase the quality of ZDMP-Apps in the Secure Business Cloud

Acceptance Criteria An error report is sent to the Secure Business Cloud backend and can be viewed
there including the contact information (email)

Requirements filled RQ_0161, RQ_0179, RQ_0194, RQ_0219

T61A012
Forward Error Report

Priority: Must

Who: Application Builder, Secure Business Cloud
When: Design time in the app builder, In zApps
Where: Anywhere
What: Errors are forwarded to the Secure Business Cloud Backend containing
the email address of the user as a contact person in order to inform the developer
about such errors
Why: To increase the quality of ZDMP-Apps in the Secure Business Cloud

Acceptance Criteria An error report is sent to the Secure Business Cloud backend and can be viewed
there including the contact information (email).

Requirements filled RQ_0161, RQ_0194, RQ_0219

T61A013
Provide a Register
form for new Users

Priority: Must

Who: Application Builder
When: Design time in the app builder, runtime in live zApps
Where: In app builder and zApps
What: Provides a form to register a new user in ZDMP
Why: To enable a common behaviour of creating new user accounts

Acceptance Criteria A user must be created and able to login afterwards

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 61 / 334

Requirements filled RQ_0161, RQ_0179, RQ_0201, RQ_0222, RQ_0219, RQ_0350, RQ_0462,
RQ_0474, RQ_0492

T61A014
Provide User Login
Form

Priority: Must

Who: Application Builder
When: Design time in the app builder, runtime in live zApps
Where: In app builder and zApps
What: Shows a popup of a User Login Form if an action needs to be authorised,
and the user is not logged in currently
Why: To give a common login mask including a behaviour template for
"authorised only" actions

Acceptance Criteria Only authorised users shall be able to act for specific actions with limited access

Requirements filled RQ_0161, RQ_0179, RQ_0201, RQ_0222, RQ_0219, RQ_0350, RQ_0462,
RQ_0474, RQ_0492

T61A015
Provide a button to
reset a password

Priority: Must

Who: Application Builder
When: Design time in the app builder, runtime in live zApps
Where: In app builder and zApps
What: Provides a button which forwards to a form to reset the password
Why: A user is not forced to create a new user account. They can just reset the
password if it is forgotten

Acceptance Criteria A new password is sent via mail to the user

Requirements filled RQ_0161, RQ_0179, RQ_0201, RQ_0222, RQ_0219, RQ_0350, RQ_0462,
RQ_0474, RQ_0492

T61A016
Provide a form to
reset a password

Priority: Must

Who: Application Builder
When: Design time in the app builder, runtime in live zApps
Where: In app builder and zApps
What: Provides a form to fill in only the email address of the user, which is
already registered
Why: To be able to send a password reset mail to the right user

Acceptance Criteria The password reset mail is sent to the user

Requirements filled RQ_0161, RQ_0179, RQ_0201, RQ_0219, RQ_0350, RQ_0462, RQ_0474,
RQ_0492

T61A017
Translate text

Priority: Should

Who: Application Builder
When: Design time in the app builder, runtime in live zApps
Where: In app builder and zApps
What: Provides an option to translate the current language in any other language
Why: To support the community and decrease the language barrier

Acceptance Criteria Translation can be saved and viewed afterwards in the ZDMP Asset

Requirements filled RQ_0091, RQ_0179, RQ_0350, RQ_0462, RQ_0474, RQ_0492

T61A018
Switch language

Priority: Should

Who: Application Builder
When: Design time in the app builder, runtime in live zApps
Where: In app builder and zApps
What: The user can choose between several (if provided) languages and select
the intended language to use for this ZDMP Asset
Why: To provide any language for ZDMP Assets

Acceptance Criteria The text in the ZDMP Asset is changed to the provided translation

Requirements filled RQ_0161, RQ_0179, RQ_0219, RQ_0350, RQ_0462, RQ_0474, RQ_0492

T61A019 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 62 / 334

Provide UI Elements Who: Application Builder
When: Design time in the app builder
Where: In app builder
What: Developers can take UI elements from the UI repository to
use them in their ZDMP Assets, which are under development
Why: To ease and accelerate the development of ZDMP Assets

Acceptance Criteria UI elements are available in the ZDMP-Studio
Requirements filled RQ_0161, RQ_0179, RQ_0201, RQ_0222, RQ_0219, RQ_0350,

RQ_0462, RQ_0474, RQ_0492
T61A020
Show Notification

Priority: Should

Who: Application Builder
When: Runtime in zApps and services
Where: In zApps and services
What: Notification will be shown on a display, in case of a triggered
event.
Why: To make a user aware of noteworthy information

Acceptance Criteria A notification is shown when it is expected after a triggered event
Requirements filled RQ_0161, RQ_0179, RQ_0180, RQ_0194, RQ_0219

T61A021
Dismiss Notification

Priority: Should

Who: Application Builder
When: Runtime in zApps and services
Where: In zApps and services
What: Developers can add a dismiss functionality to make
notifications disappear
Why: To remove a notification that has already been read or
ignored

Acceptance Criteria The notification disappears after dismissing it
Requirements filled RQ_0161, RQ_0179, RQ_0180, RQ_0194, RQ_0219

T61A022
Remind Later

Priority: Should

Who: Application Builder
When: Design time in the app builder, runtime in zApps
Where: In app builder and zApps
What: Developers can set a timer to appear and a notification after
the timer is elapsed
Why: To remind users of valuable information if they have ignored
the information before

Acceptance Criteria The notifications appear again as soon as a defined timer is
elapsed

Requirements filled RQ_0161, RQ_0179, RQ_0180, RQ_0194, RQ_0219
T61A023

Manifest reading
Priority: Must

Who: ZDMP-OS Drivers

When: Design time in the app builder

Where: In app builder
What: Returns a manifest file from an installed driver

Why: So that ZDMP-OS enablers can query drivers on their usage

Acceptance Criteria Existing files with drivers must be installed previously by the ZDMP-OS
Marketplace Manifest interface retrieves a json file associated to a given driver
required in a request

Requirements filled RQ_0161, RQ_0219

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 63 / 334

Figure 47: Applications Builder Features

3.4.3 Workflows

This section is highlighting the user interaction and the interaction of the component in
Application Builder UI.

 Invoke Plugin API

The SDK includes the possibility of working with different modules such as application
builders, composers, and can be extended to reuse any generic type of component, simply
exposing its API to the SDK clients. These are plug-in modules that can be invoked by the
SDK. Hence, these plugins also need to be connected to the SDK and requested to be
accessed by their APIs, as shown in the following figure.

The main steps / functionalities are:

• Invoking the SDK for calling the desired functionality

• The SDK determines if there is any configuration needed for the execution

• The SDK completes the component configuration and invokes it to retrieve its API list

• The SDK returns to the caller the API of the plugged component

 Invoke the Service Composition Services

The SDK will expose the API for the developer (or Studio) to compose a ZDMP
Application. The supporting applications are available at the ZDMP Platform and the
service is invoked through the SDK, as can be seen in the following figure.

The main steps / functionalities are, when invoking the SDK for Composing the
Application:

• The SDK retrieves the zApp Configuration

• The SDK invokes the Dependency checker, to see if all needed sources/libraries are
available in the ZDMP Repository

• The SDK invokes the API checker, to see if all Interfaces are being compliant

• The SDK invokes an application to define the build manifest with the outcomes of the
previous calls

• The SDK returns the Build Manifest to the caller. This is the needed input for making
the zApp build in the future

Figure 48: Invoking Plugin API Functionalities

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 64 / 334

Figure 49: Composing a zApp

 Invoke the Developer Engagement Hub APIs

The SDK includes the possibility of working with the APIs of the Developer Engagement
Hub. No interactions are foreseen here as the SDK will simply expose the Hub’s APIs, as
seen in the following figure.

The main steps / functionalities are:

• Invoking the SDK for getting the appropriate Engagement Hub API for the current
project

Figure 50: Invoking the Engagement Hub APIs

 Reset Password

This feature enables users to reset their password in case of a forgotten password. The
user will then be provided with a new password via mail by the ZDMP Security component.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 65 / 334

The main steps/functionalities are:

• Receive the command to reset the password

• Forward command to the security component, to initialise the password reset process

• Provide a confirmation to the zAsset

Figure 51: Reset Password Sequence Diagram

 Add new Language

This feature enables users to add a new language to a zAsset. For this, a tool is provided
that shows all strings from a zAsset and the default language (English) that can be
translated. After the user has translated the existing strings, they can save it locally and
send it to the developer to include the translation in the default version of the zAsset.

The main steps/functionalities are:

• Translate the current strings into a new language

• Save the translation locally and send it to the developer for a permanent language
option

• The developer must review the new translation and must make sure that there are no
obvious and knowing violations

• The developer must release a latest version of a ZDMP Asset with updated
languages

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 66 / 334

Figure 52: Add new Language Sequence Diagram

 Switch Language

This feature enables users to switch the language of a zAsset at runtime. The default
language is always English, but users can add new languages that also can be used by
others.

The main steps/functionalities are

• Choose the language to be used in the zAsset

• Translate text into the targeted language

Figure 53: Switch Language Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 67 / 334

 Manage Notification

This feature enables users to get notifications of important messages or pending
interactions. The developer can easily integrate this behaviour via the Notification
Template.

The main steps/functionalities are:

• Show the notification on the screen

• Remove the notification from the screen

• Set a reminder for a later appearance

Figure 54: Manage Notification

3.5 SDK API Management (T6.1)

3.5.1 Overall Functional Characterization

The API Management is a JS based backend component that enables the Application
Builder to interact with ZDMP assets. In practice, the drag and drop development
environment on the web frontend is internally built by interconnected APIs and bindings to
ZDMP services. These APIs are provided by other technical components that respond to
individual requirements of the platform. This enables to make features functional by calling

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 68 / 334

external services as data acquisition, AI and analytics, storage, human collaboration, and
marketplace.

3.5.2 Functions / Features

This function can be grouped to the following features which have to be implemented:

Subtask Subtask description

T61B001
Get zApps

Priority: Must

Who: zApps Developer

When: Design time in the app builder

Where: In app builder
What: Lists existing zApps (stored on the ZDMP-Store) getting their names,
detail on functionality, version, etc
Why: Browse existing zApps to reuse them or to understand how to interact
with them

Acceptance Criteria Invoker got a structured list of the zApps stored on ZDMP-Store

Requirements filled RQ_0258, RQ_0331, RQ_0340, RQ_0370, RQ_0001

T61B002

Get ZDMP Assets

Priority: Must

Who: zApps Developer

When: In app builder

Where: Design time in the app builder
What: Lists existing ZDMP assets (components, services) getting their names,
detail on functionality, version, etc
Why: Browse existing services to reuse them or to understand how to interact
with them

Acceptance Criteria Invoker got a structured list of the ZDMP components and services

Requirements filled RQ_0258, RQ_0331, RQ_0340, RQ_0370, RQ_0001

T61B003
Get Data Analytics
Services

Priority: Must

Who: zApps Developer

When: Design time in the app builder, run time in zApps and service

Where: Anywhere
What: Lists existing Data Analytics services, getting their names, detail on
functionality, version, etc

Why: Browse existing services to understand how to use them

Acceptance Criteria Invoker got a structured list of the Data Analytics services

Requirements filled RQ_0161, RQ_0174, RQ_0175, RQ_0194, RQ_0219

T61B004
Get Monitoring
Services

Priority: Must

Who: zApps Developer

When: Design time in the app builder, run time in zApps and service

Where: Anywhere
What: Lists existing Monitoring services, getting their names, detail on
functionality, version, etc

Why: Browse existing services to understand how to use them

Acceptance Criteria Invoker got a structured list of the Monitoring services

Requirements filled RQ_0161, RQ_0174, RQ_0175, RQ_0194, RQ_0219

T61B005
Get Alerting Services

Priority: Must

Who: zApps Developer

When: Design time in the app builder, run time in zApps and service

Where: Anywhere
What: Lists existing Alerting services, getting their names, detail on functionality,
version, etc

Why: Browse existing services to understand how to use them

Acceptance Criteria Invoker got a structured list of the Alerting services

Requirements filled RQ_0161, RQ_0174, RQ_0175, RQ_0194, RQ_0219

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 69 / 334

T61B006
Get Data Models

Priority: Must

Who: zApps Developer

When: Design time in the app builder, run time in zApps and service

Where: Anywhere
What: Lists existing Data Models and stored patterns, getting their names,
detail on functionality, version, etc

Why: Browse existing models and patterns to understand how to use them

Acceptance Criteria Invoker got a structured list of the stored Data Models and patterns

Requirements filled RQ_0161, RQ_0219

T61B007
Get Data Analytics
service API

Priority: Must

Who: zApps Developer

When: Design time in the app builder, run time in zApps and service

Where: Anywhere
What: Retrieves API and manifest files for the selected Data Analytics service

Why: Make use of APIs and manifests

Acceptance Criteria Invoker got API and manifest definition and description

Requirements filled RQ_0161, RQ_0174, RQ_0175, RQ_0194, RQ_0219

T61B008

Get Monitoring
service API

Priority: Must

Who: zApps Developer

When: Design time in the app builder, run time in zApps and service

Where: Anywhere
 What: Retrieves API and manifest files for the selected Monitoring service
Why: Make use of APIs and manifests

Acceptance Criteria Invoker got API and manifest definition and description

Requirements filled RQ_0161, RQ_0174, RQ_0175, RQ_0194, RQ_0219

T61B009

Get Alerting service
API

Priority: Must

Who: zApps Developer

When: Design time in the app builder, run time in zApps and service

Where: Anywhere
What: Retrieves API and manifest files for the selected Alerting service
Why: Make use of APIs and manifests

Acceptance Criteria Invoker got API and manifest definition and description

Requirements filled RQ_0161, RQ_0194, RQ_0219

T61B010

Get Data Model
definitions

Priority: Must

Who: zApps Developer

When: Design time in the app builder, run time in zApps and service

Where: Anywhere
What: Retrieves APIs and manifest files for the selected data model /
design pattern
Why: Make use of APIs and manifests

Acceptance Criteria Invoker got API and manifest definition and description

Requirements filled RQ_0161, RQ_0219

T61B011

Retrieve Composition
data

Priority: Must

Who: zApps Developer

When: Design time in the app builder, run time in zApps and service

Where: Anywhere
What: Submits a set of APIs and Manifests describing the services, and
particularly a manifest that describes how the services should be composed
Why: To provide all information needed for the zApp build

Acceptance Criteria zApp Composer received the set of APIs and Manifests corresponding to the zApp
being developed

Requirements filled RQ_0161, RQ_0219, RQ_0247

T61B012

Validate APIs
Priority: Must

Who: zApp Composer

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 70 / 334

When: Design time in the app builder

Where: In app builder
What: Analyses interfaces and API specifications and ensures that the
invocation data complies to that specification

Why: To ensure that the defined APIs are being respected

Acceptance Criteria All invocations of internal and external interfaces comply with the APIs
specifications

Requirements filled RQ_0247

T61B013
Store Configuration

Priority: Must

Who: zApps Developer

When: Design time in the app builder

Where: Anywhere
What: Stores the zApp project configuration file to the Data Storage

Why: Store the new zApp configuration to the Data Storage, as well as the
configuration of the SDK and Studio that were used for building it

Acceptance Criteria Invoker got response about storing the configurations in the Data Storage

Requirements filled RQ_0111, RQ_0161, RQ_0194, RQ_0219, RQ_0319

T61B016
Post User Credentials

Priority: Must

Who: Application Builder and Security
When: Design time in the app builder, runtime in zApps and services
Where: In app builder and zApps
What: The Application Builder makes a call to the security component with the
entered user credentials in order to authorise the user and gets the user
permissions
Why: To provide the security component with valid user information in order to
get a response

Acceptance Criteria The Application Builder should get a response from the security component to
process the response

Requirements filled RQ_0161, RQ_0219

T61B017
Process User
Credentials

Priority: Must

Who: Application Builder
When: Design time in the app builder, runtime in zApps and services
Where: In app builder and zApps
What: Receives the response from the Security component and evaluates it
Why: To continue the workflow with permitted access

Acceptance Criteria The response of the security should contain one of the following:
Successful user login including authorised permission to act
Successful user login including unauthorised permission to act
Invalid User Credentials

Requirements filled RQ_0161, RQ_0219

T61B018

Call Marketplace
Priority: Must

Who: SDK

When: Design time in the app builder, runtime in zApps and services
Where: In app builder and zApps
What: Call the ZDMP-Platform to execute a process

Why: So that a process is effectively executed

Acceptance Criteria The invoke call is successfully relayed to the ZDMP-Platform

Requirements filled RQ_0258, RQ_0331, RQ_0340, RQ_0370, RQ_0001, RQ_0225

T61B019

Receive data from
Platform

Priority: Must

Who: SDK

When: Design time in the app builder, runtime in zApps and services

Where: Anywhere
What: Data processed is sent back

Why: So that a process can relay the data received to the calling zApp/ZDMP-
OS Asset

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 71 / 334

Acceptance Criteria The processed data is received by the Process Instance

Requirements filled RQ_0161, RQ_0219, RQ_0258, RQ_0331, RQ_0340, RQ_0370, RQ_0001

T61B020

Call External Service
Provision

Priority: Must

Who: SDK

When: Design time in the app builder, runtime in zApps and services

Where: Anywhere
What: Call the external service provision

Why: So that a process is effectively helped by the execution of 3rd party
services

Acceptance Criteria The invoke call is successfully relayed to the ESP

Requirements filled RQ_0161, RQ_0174, RQ_0175, RQ_0194, RQ_0219

T61B021

Receive data from
External Service
Provision

Priority: Must

Who: SDK

When: Design time in the app builder, runtime in zApps and services

Where: Anywhere
What: Data processed is sent back

Why: So that a process can relay the data received to the calling z-App/ZDMP-
OS Asset

Acceptance Criteria The processed data is received by the Process Instance

Requirements filled RQ_0161, RQ_0219

T61B022

Send usage data
Priority: Must

Who: SDK

When: Design time in the app builder, runtime in zApps and services

Where: Anywhere
What: Send usage data

Why: So that the Platform can inform the System Dashboard (T6.4 / T6.5)

Acceptance Criteria The usage data is successfully relayed to the Platform

Requirements filled NONE

T61B023

RESTful API to
messaging using
HTTP

Priority: Must

Who: ZDMP-OS Assets

When: Design time in the app builder, runtime in zApps and services to request
services from other APIs and services

Where: Anywhere
What: Provide interface for sending messages using HTTP.

Why: To enable APPs to use messaging component to send messages by
using HTTP through standardised and understandable interface.

Acceptance Criteria zApps can send and receive message through the exposed RESTful interface

Requirements filled RQ_0161, RQ_0194, RQ_0219

Figure 55: SDK-/API Management Features

3.5.3 Workflows

This section is highlighting the user interaction and the interaction of the component in API
management.

 Browse zApps and APIs

The SDK allows a developer (via API), or any other client service (eg Studio) to retrieve
the set of zApps from the ZDMP Marketplace, as can be seen in the following figure.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 72 / 334

Figure 56: Retrieve zApps from Marketplace

 Retrieve Assets from Data Storage

As with to the zApps retrieval, the multiple assets that are available on ZDMP can be
retrieved from the Data Storage, using the flow depicted on the following figure.

The main steps / functionalities are:

• Query the existing zAssets (services for zApps) and select a set of zAssets

• Apply a desired filter and select the desired zAsset

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 73 / 334

Figure 57: Retrieve ZDMP assets from the Data Storage

3.6 SDK Development Tools (T6.1)

3.6.1 Overall Functional Characterization

Application Builder provides several tools to zApps developers to support functions like
editing, compiling, debugging, syntax highlight and automation of source code. To allow
subgrouping of source code files, a dependency check tool is made available. After the
app is developed, it can be built to a mobile app, web app or desktop app using Builder.
The Builder use Ionic framework to build apps for mobile (iOS / Android) and Electron to
build a desktop app.

A service validator is used to check if the connections between services made by the
developer through the graphical interface are feasible to implement with the ZDMP APIs.

3.6.2 Functions / Features

There function can be grouped to the following features which have to be implemented:

Subtask Subtask description

T61C001

Validate APIs
Priority: Must

Who: 3ʳᵈ party developer via zApp Composer

When: Design time in the app builder

Where: Can be anywhere, where access to the platform and the necessary
services are given
What: Analyses interfaces and API specifications and ensures that the
invocation data complies to that specification

Why: To ensure that the defined APIs are being respected

Acceptance Criteria All invocations of internal and external interfaces comply with the APIs
specifications

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 74 / 334

Requirements filled RQ_0161, RQ_0247

T61C002
Build

Priority: Must

Who: 3ʳᵈ party developer via zApps Developer

When: Design time in the app builder

Where: In app builder
What: Submits a set of APIs and Manifests describing the new zApp, together
with the modules of code for building, and the response should be whether the
build was successful or not.

Why: To validate the build of the new zApp

Acceptance Criteria Invoker got response regarding the Build invoking after submitting a set of
information

Requirements filled RQ_0091, RQ_0161, RQ_0350, RQ_0462, RQ_0474, RQ_0492

T61C003
Deploy

Priority: Must

Who: zApps Developer

When: Design time in the app builder

Where: In app builder
What: Submits a set of APIs and Manifests describing the new zApp, and its

code/built executable

Why: store the new zApp in the ZDMP-Store

Acceptance Criteria Invoker got response about deploying the new zApp in the ZDMP-Store

Requirements filled RQ_0091, RQ_0161, RQ_0350, RQ_0462, RQ_0474, RQ_0492

T61C004
Edit

Priority: Must

Who: Application Builder, Asset

When: Design time in the app builder, In zApps

Where: In app builder
What: Uncaught exceptions are intercepted and afterwards transformed in a
readable format
Why: To increase readability of error reports

Acceptance Criteria The result of the creation should be a valid report model, which can be parsed
into a valid JSON format

Requirements filled RQ_0091, RQ_0161, RQ_0350, RQ_0462, RQ_0474, RQ_0492

T61C005
Compile

Priority: Must

Who: Application Builder, Secure Business Cloud
When: Design time in the app builder
Where: In app builder
What: Errors are submitted to the Secure Business Cloud Backend to inform the
developer about such errors

Why: To increase the quality of ZDMP-Apps in the Secure Business Cloud

Acceptance Criteria An error report is sent to the Secure Business Cloud backend and can be viewed
there

Requirements filled RQ_0091, RQ_0161, RQ_0350, RQ_0462, RQ_0474, RQ_0492

T61C006
Debug

Priority: Must

Who: Application Builder, Secure Business Cloud
When: Design time in the app builder
Where: In app builder
What: Errors are submitted to the Secure Business Cloud Backend containing
the email address of the user as a contact person in order to inform the developer
about such errors
Why: To increase the quality of ZDMP-Apps in the Secure Business Cloud

Acceptance Criteria An error report is sent to the Secure Business Cloud backend and can be viewed
there including the contact information (email)

Requirements filled RQ_0091, RQ_0161, RQ_0350, RQ_0462, RQ_0474, RQ_0492

T61C007
Syntax Highlighting

Priority: Must

Who: Application Builder, Secure Business Cloud
When: Design time in the app builder

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 75 / 334

Where: In app builder
What: Errors are forwarded to the Secure Business Cloud Backend containing
the email address of the user as a contact person in order to inform the developer
about such errors
Why: To increase the quality of ZDMP-Apps in the Secure Business Cloud

Acceptance Criteria An error report is sent to the Secure Business Cloud backend and can be viewed
there including the contact information (email)

Requirements filled RQ_0091, RQ_0161, RQ_0350, RQ_0462, RQ_0474, RQ_0492

T61C008
Automation

Priority: Must

Who: Application Builder
When: Design time in the app builder
Where: Design time in the app builder
What: Provides a form to register a new user in ZDMP
Why: To enable a common behaviour of creating new user accounts

Acceptance Criteria A user must be created and able to login afterwards

Requirements filled RQ_0091, RQ_0161, RQ_0258, Q_0318, RQ_0331, RQ_0340, RQ_0370, RQ_0001

T61C009
Dependency checks

Priority: Must

Who: Application Builder
When: Design time in the app builder
Where: In app builder
What: Shows a popup of a User Login Form if an action needs to be authorised,
and the user is not logged in currently
Why: To give a common login mask including a behaviour template for
"authorised only" actions

Acceptance Criteria Only authorised users shall be able to act for specific actions with limited access

Requirements filled RQ_0111, RQ_0161, RQ_0247, RQ_0350, RQ_0462, RQ_0474, RQ_0492

T61C010
Parsers

Priority: Must

Who: Application Builder and Security
When: Design time in the app builder
Where: In app builder
What: The Application Builder makes a call to the security component with the
entered user credentials in order to authorise the user and gets the user
permissions
Why: To provide the security component with valid user information in order to
get a response

Acceptance Criteria The Application Builder should get a response from the security component to
process the response

Requirements filled RQ_0091, RQ_0161

T61C011
Service Validators

Priority: Must

Who: Application Builder
When: Design time in the app builder
Where: In app builder
What: Receives the response from the Security component and evaluates it
Why: To continue the workflow with permitted access

Acceptance Criteria The response of the security should contain one of the following:
Successful user login including authorised permission to act
Successful user login including unauthorised permission to act
Invalid User Credentials

Requirements filled RQ_0161, RQ_0194, RQ_0247

Figure 58: SDK Development Tools Functions

3.6.3 Workflows

This section is highlighting the user interaction and the interaction of the component in the
single functions.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 76 / 334

 Build zApp

The SDK exposes the API for the developer (or Studio) to build a ZDMP Application. The
builders themselves are available at the ZDMP Platform, and the service is invoked
through the SDK, as can be seen in the following figure.

The main steps / functionalities are:

• Invoking the SDK for Building the Application

• The SDK retrieves and configures the appropriate Builder on the ZDMP Platform

• The SDK invokes the Build process

• The SDK returns to the caller the building report

 Deploy a zApp

The SDK exposes the API for the developer (or Studio) to deploy a ZDMP Application. The
creation of the deployment instance container itself is available at the ZDMP Platform, and
the service is invoked through the SDK, as can be seen in the following figure.

The main steps / functionalities are:

• Invoking the SDK for Deploying the Application

• The SDK configures the deployment environment on the ZDMP Platform

• The SDK invokes the Deploy process

• The SDK returns to the caller an instance of the deployed zApp

Figure 59: Building a zApp

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 77 / 334

Figure 60: Deploying a zApp

 Report Errors

This feature sends error reports to the developer, so that the developer can react quickly
to troubleshoot the application. There, the developer gets information about the user, the
used system, and the error message itself. For this feature, an internet connection is
necessary, because of a direct communication with the Marketplace.

The main steps/functionalities are:

• Intercept exceptions during runtime of zAssets

• Create an error report with all retrievable information (Sender, Operating System,
Error Message, and time)

• Send the error report to the Marketplace, where the developer gets insight in the
administration view

Figure 61: Report Errors Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 78 / 334

 Register User

This feature enables new users to register to ZDMP, which then enables them to log in
and use its functionalities. For this, the user only must enter their first name, last name,
and email address. It is also required to accept ZDMP Terms of Service and Privacy
Policy.

The main steps/functionalities are:

• Validate and submit user information

• Forward information to the security component, to get a confirmation about the
registration process

 Login User

This feature enables new users to login into ZDMP. After that, the users can use all ZDMP
functionalities within the scope of their authorisation. For the login, the user only needs to
enter its credentials (username and password).

The main steps/functionalities are:

• Receive user credentials, in which the password is of course encrypted

• Forward credentials to the security component, to get session information

• Provide session information to the zAsset

Figure 62: Register User Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 79 / 334

Figure 63: Login User Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 80 / 334

3.7 Security Designer (T6.2)

3.7.1 Overall functional characterization & Context

Purpose: The Security Designer (SD) enables automated and
systematic identification of risks to the assets (both human and
technological) contained or connected to the ZDMP platform. By assets
it can mean: Computers, processes, networks, communication links,
users etc. The Security Designer also allows identifying the knock-on
consequences and countermeasures to mitigate these risks. The tool
allows collaboration between several stakeholders to develop the system
model and the associated risk catalogue.

Description: The Security Designer provides the ZDMP infrastructure and process design
validation by inferring the missing assets. The primary and secondary threats are
automatically generated for each asset, along with the corresponding control strategies,
helping users understand what risk management measures are needed in their system.
Based on the threats and controls encoded in the knowledge base, SD identifies the potential
weaknesses of the model and suggests controls for addressing the nascent threats. This
helps users to understand what countermeasures are required. Security modelling is an
iterative process which consists of the following main steps:

• The user constructs a system model by placing assets on the modelling canvas and
creates links (relations) between the assets. The user-defined entities are called
“asserted assets” and “asserted relations”

• The next step is the validation which determines whether the information provided
about the assets and relationships is consistent and complete. If the validation fails
(ie the model gets marked as ‘invalid’) then the user updates the model and validates
it again. During validation, the inferred assets/relations, threats, and security controls
(the counteract the threats) are automatically generated

• The final step is the threat management, during which the user addresses individual
threats by selecting controls for the assets or control strategies for the threats. The
aim is to eliminate or at least mitigate all threats

The main components of SD and the association with other ZDMP components are
described in detail in D4.3a: Global Architecture Specification.

3.7.2 Functions / Features

This section describes the primary features and functions of Security Designer:

• Login and registration: The login page is activated either by clicking on ‘Sign In’ link
in the dropdown menu or by clicking on the Login button. The user must enter their
username and password. If the user is new to the system, they must first register a
new user account. If they have previously received an invitation email from the
Security Designer Admin, they simply click the link in that email, which opens the
registration page. Otherwise, the user manually clicks the Register button on the
welcome page, or the Register menu option.

• Model management: This feature provides various functionalities such as: listing,
creating, importing/exporting models and deleting models. After a successful login,
the user is presented with a list of their models that were previously created. In the
model details, the Domain used by the model is labelled. There is also a description

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 81 / 334

of the model, which can be edited via the Edit Details function. At the bottom of the
model panel, there are several icons that reflect the status of the model.

• The Create New Model function opens a design palette and allows the user to
choose which domain model to use. The import function allows the user to upload a
previously saved file into a new model. The user can also import asserted facts only
(eg asserted assets, relations). If restoring a previous version of a model, the user
can check ‘Overwrite existing model’. Attempting to import the same model without
this being checked will result in an error. A user can re-import an existing model with
a different name by checking New Name. Once the model was constructed, it can be
exported into a file. Using the export function, the model is saved into the user’s
“downloads” directory. The delete action removes the model along with any
associated data items (eg assets, relationships).

• Model construction: This is iterative process that involves: selecting and adding
assets to the construction canvas, adding relationships between assets, deleting
assets/relations, and renaming assets. An asset can be added to the construction
canvas by selecting an icon in the Asset Palette and dragging it onto the canvas. The
Asset Palette contains various assets; these fall into four main categories: Hosted
Asset, Network Asset, Space, and Stakeholder. Once the assets have been put onto
the modelling canvas, the user can connect pairs of assets by establishing links
between them. Assets and links can be deleted. By deleting an asset all incoming
and outgoing links will also get deleted. The user can rename an existing asset by
editing the asset’s name under the corresponding icon. By changing the name, the
asset’s connections will stay unaffected. All asset names must be unique.

• Obtaining information from ZDMP components: This information is used by
security expert for constructing and refining the security model. This information may
include the following: Security controls of components and zApps, logical/physical
connections between components, deployment of components,
authentication/authorization of users, security settings of network topology. For a
detailed description see D4.3a: Global Architecture Specification.

• Model validation: Each newly constructed model must be validated. The validation
function runs semantic reasoning that generates inferred assets and relations that
are added to the model automatically and produces a list of threats and misbehaviour
sets associated with the given model. This operation guarantees that the inferred
assets are consistent with the asserted assets and relationships.

• Risk calculations: After validating the model that includes potential threats and
asset misbehaviours, it is possible to calculate risk levels for them. The risk levels
depend on the Trustworthiness Attributes for assets (which determine the likelihood
of threats), and the Impact level settings for misbehaviours. The validated model will
have default values for these which are determined from the types of Asset and the
type of Trustworthiness Attribute or misbehaviour at each Asset. In most cases the
defaults will be acceptable, but in most system models a few of the default settings
will need to be overridden by user input, indicating which assets are likely entry
points for attackers, and which asset misbehaviours would cause serious problems
for operation of the system.

• Threat management: Threats may be resolved by selecting one or more controls
within the Control sets panel. Each control set represents a control on this asset. The
Threat Explorer panel displays detailed information about individual threats, including
a description along with its likelihood and risk.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 82 / 334

• Reporting: This function generates a detailed description on both asserted and
inferred assets. The information includes the following fields: name of asset, type,
trustworthiness, control sets and misbehaviours.

Details of individual functions are described in the following table.

Subtask Subtask description
T62A001
Provide User Login
Form

Priority: Must

Who: T6.2 Security Designer
Where: Anywhere
When: Design time
What: Present the user the login form
Why: To enable the user to access models and to create new ones.

Acceptance Criteria Provide access to the user.

Requirements filled RQ_0111, RQ_0161, RQ_0247, RQ_0350, RQ_0462, RQ_0474, RQ_0492

T62A002
Provide Registration
form for new users

Priority: Must

Who: T6.2 Security Designer
Where: Anywhere
When: Design time
What: Present the user a registration form.
Why: Enable registration of new users

Acceptance Criteria Successful registration, a confirmation email is sent to the user for verification.

Requirements filled RQ_0039, RQ_0073, RQ_0079, RQ_0081, RQ_0113, RQ_0241, RQ_0286, RQ_0423, RQ_0424,
RQ_0425, RQ_0426, RQ_0427, RQ_0428, RQ_0429, RQ_0430, RQ_0431, RQ_0432, RQ_0433

T62A003
Create New Model

Priority: Must

Who: T6.2 Security Designer
Where: Anywhere
When: Design time
What: Open a model construction palette
Why: Enable to create and edit a system security model

Acceptance Criteria The user gets access to the model design palette and can select from assets
required for constructing a security model

Requirements filled Requirements to be identified in the security modelling use case

T62A004
List models

Priority: Must

Who: T6.2 Security Designer
Where: Anywhere
When: Design time
What: List all models previously created by the user
Why: For revising, updating, and deleting models

Acceptance Criteria The selected model can be edited or removed

Requirements filled Requirements to be identified in the security modelling use case

T62A005
Import Model

Priority: Must

Who: T6.2 Security Designer
Where: Anywhere
When: Design time
What: Importing model file
Why: Reading previously stored model file

Acceptance Criteria The model file is successfully uploaded, and the model can be edited

Requirements filled Requirements to be identified in the security modelling use case

T62A006
Export Model

Priority: Must

Who: T6.2 Security Designer
Where: Anywhere
When: Design time
What: Exporting model file
Why: Saving model file in a specific format

Acceptance Criteria Model file saved

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 83 / 334

Requirements filled Requirements to be identified in the security modelling use case

T62A007
Validate Security
Model

Priority: Must

Who: T6.2 Security Designer
Where: Anywhere
When: Design time
What: All assets and connections of the security model are checked, and the
missing assets inserted
Why: Ensuring that the model is correct and consistent with the information
stored in the ontology. The validation also generates a list of threats and controls
for each asset

Acceptance Criteria Producing a correct (valid) security model, generating threats and controls

Requirements filled Requirements to be identified in the security modelling use case

T62A008
Generate Security
Report

Priority: Must

Who: T6.2 Security Designer
Where: Anywhere
When: Design time
What: Produce a summary security report
Why: Overview of the system, listing the untreated threats, controls, and risks for
each asset

Acceptance Criteria Full list of assets with all security attributes in the right format

Requirements filled Requirements to be identified in the security modelling use case

T62A009
Risk calculations

Priority: Must

Who: T6.2 Security Designer
Where: Anywhere
When: Design time
What: Calculate the level of risk for individual threats. The risk characterises the
likelihood and impact of a threat
Why: Each security control is supposed to reduce the level of risk. By this
calculation we can check how efficient the given control was

Acceptance Criteria Correct risk calculation and ranking the threats according to the risk level

Requirements filled Requirements to be identified in the security modelling use case

T62A010
Obtaining security
related information
from ZDMP
components

Priority: Must

Who: T6.2 Security Designer
Where: Anywhere
When: Design time
What: Obtain security information from other ZDMP components
Why: The security information will be used by the security expert for designing
the model.

Acceptance Criteria Information from ZDMP components that can be used for refining the security
model

Requirements filled RQ_0258, RQ_0331, RQ_0340, RQ_0370, RQ_0001, RQ_0161, RQ_0219, RQ_0247,
RQ_0331, RQ_0340, RQ_0370, RQ_0001, RQ_0225

Figure 64: Security Modeller Functions

3.7.3 Workflows

In the following sections two workflows will be detailed. The first collects information from
ZDMP components, zApps, physical and logical connections between the components,
network typology, and users’ security authorisation/authentication. The second workflow
describes the main steps required for model construction, validation and addressing threats.

 Collecting information from ZDMP components

The traditional use of the Security Designer relies only on the expert knowledge of a security
analyst. In ZDMP additional information is intended to be used that can be obtained from
other ZDMP components. This information is then used by the security analyst for model

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 84 / 334

construction. The sequence diagram representing the interaction of SD with ZDMP
components that supply information is presented in the following figure.

Figure 65: Collecting information from ZDMP components

 Modelling process

The user interacts with the SD via the Security Designer UI running in a web browser. The
user, after successful login, sends a “Create Model” request to the Security Designer
Controller (represented by a REST interface). The request is forwarded to the System Model
Designer (GUI for model construction). As the model is being constructed it is automatically
stored in the Triple Store subcomponent. The “Validate Model” command is issued via the
Security Designer UI. The command checks the model and updates it with the missing
assets and relations (referred to as “inferred” entities). The validation also produces a list of
threats and controls to counter the threats. This information along with the updated model
is presented to the user in the Security Designer UI. In the following the user issues the
“Calculate risk” command that computes the risk level and probability of occurrence for each
threat. The user can then select various controls to manage the risk level. This is an iterative

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 85 / 334

process, which aims to eliminate or at least mitigate the threats. The ultimate step is the
presentation of a security report that summarises the threats/controls/risks for each asset
and each relation of the security model. The sequence diagram representing the “Model
construction, validation and threat management” workflow is in the following figure.

Figure 66: Model construction, validation, risk calculation and threat management

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 86 / 334

3.8 Prediction and Optimisation Designer (WP7)

3.8.1 Overall functional characterization & Context

Process Prediction and Optimisation Designer supports the
development of applications that uses models to solve problems. The
component provides a classification of typical prediction use cases in
manufacturing processes (eg in categories such as preparation stage
optimisation, process optimisation, or resource consumption
optimisation), linked to prediction and optimisation models that are suited to solve the
problems.

3.8.2 Functions / Features

• Objective selection: To configure the model project, the user selects the objective
(eg minimisation or maximisation of resources). It is possible to select from a list of
available pre-defined objectives according to a categorisation (eg resource efficiency
maximisation, process overall efficiency optimisation, energy efficiency optimisation,
start-up optimisation)

• Performance configuration: Different contexts require different solutions in terms of
model performance (time convergence and accuracy). For the time convergence, the
user defines a category of expected time performance (eg fast, medium, and slow),
since time depends on the size of the problem, the algorithm used, and the available
computational resources. Accuracy is the expected precision of the solution with
respect to the optimal solution. In terms of usability, the user selects from a limited
number of options (eg high, medium, or low)

• Algorithm selection: The Model Designer provides recommendations according to
the project parameters in terms of available implemented models in ZDMP that can
solve the problem. The user can modify this setting

• Data source configuration: Data sources are the fuel of models, where information
is consumed to train, test and solve the business problems. Data sources are already
configured in the ZDMP Platform. This feature defines the mapping between those
and the inputs and outputs when training, testing, and running the model at various
stages

• Load Optimisation Model: The Process Model Designer loads the selected model
into the model runtime engine to train, test, and deploy it at the production
environment

• Train Optimisation Model: Many models require training to customise their
parametrisation according to the problem scope

• Test Optimisation Model: This is the stage where the algorithm is faced with a set
of real data and its performance is measured to validate its appropriateness when
solving the problem at hand

• Execute Optimisation Model: At this stage, the model is customised and has
demonstrated its value addressing the business problem (eg Configuring a machine
to reduce the setup time)

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 87 / 334

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
PE001
Create Model Project

Priority: Must

Who: Process Engineer
When / Where: During development, on the developer’s environment (on-
premises or in the cloud)
What: Creates a new instance of an optimisation model
Why: To optimise the process according to different criteria

Acceptance Criteria A new instance of an optimisation model is available for configuration

Requirements filled RQ-0097

PE002
Select Optimisation
Objective

Priority: Must

Who: Process Engineer
When / Where: During development, on the developer’s environment (on-
premises or in the cloud)
What: User selects the optimisation objective from an available set of options
Why: To specify the type of optimisation problem to solve

Acceptance Criteria The user can select the optimisation objective from a set of pre-defined options

Requirements filled RQ-0096

PE003
Set Time Performance

Priority: Must

Who: Process Engineer
When / Where: During development, on the developer’s environment (on-
premises or in the cloud)
What: User selects the time performance from an available set of options
Why: To specify the type of optimisation problem to solve

Acceptance Criteria The user can select the time performance from three categories: low, medium,
high

Requirements filled RQ-0096

PE004
Set Accuracy

Priority: Must

Who: Process Engineer
When / Where: During development, on the developer’s environment (on-
premises or in the cloud)
What: User selects the accuracy from an available set of options
Why: To specify the type of optimisation problem to solve

Acceptance Criteria The user can select the accuracy from three categories: low, medium, high

Requirements filled RQ-0096

PE005
Get Algorithms

Priority: Should

Who: Process Engineer
When / Where: During development, on the developer’s environment (on-
premises or in the cloud)
What: User selects the optimisation algorithm from an available set of options
Why: To specify the algorithm and model to use

Acceptance Criteria With the optimisation, time performance, and accuracy provided, the user is
prompted with a default algorithm and this default value can be updated

Requirements filled RQ-0035, RQ-0038, RQ-0087

PE006
Set Algorithm

Priority: Must

Who: Process Engineer
When / Where: During development, on the developer’s environment (on-
premises or in the cloud)
What: User confirms the selected configuration and creates the model
Why: To build the optimisation model according to the provided configuration

Acceptance Criteria With the optimisation, time performance, and accuracy provided, the user is
prompted with a default algorithm and this default value can be updated

Requirements filled RQ_0138

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 88 / 334

PE007
Load Model

Priority: Must

Who: Process Engineer
When / Where: During development, on the developer’s environment (on-
premises or in the cloud)
What: User loads the created model
Why: To load a new model instance with the provided configuration

Acceptance Criteria If successful, the user is prompted with a confirmation message. If not, the user
is prompted with an error message

Requirements filled None. This requirement is a technical requirement that permits the indirect
fulfilment of other requirements.

PE008
Select training data
source

Priority: Must

Who: Process Engineer
When / Where: During development, on the developer’s environment (on-
premises or in the cloud)
What: User selects the data sources to train the model
Why: To configure the data sources to be used to train the model

Acceptance Criteria The user can select the data sources that have been previously configured in the
platform

Requirements filled RQ-0044

PE009
Train Model

Priority: Must

Who: Process Engineer
When / Where: During development, on the developer’s environment (on-
premises or in the cloud)
What: User trains the model
Why: To train the model with the provided training sequence

Acceptance Criteria If successful, the user is prompted with a confirmation message. If not, the user
is prompted with an error message

Requirements filled None. This requirement is a technical requirement that permits the indirect
fulfilment of other requirements.

PE010
Select test data
source

Priority: Must

Who: Process Engineer
When / Where: During development, on the developer’s environment (on-
premises or in the cloud)
What: User selects the data sources to evaluate the model
Why: To configure the data sources to be used to train the model

Acceptance Criteria The user can select the data sources that have been previously configured in the
platform

Requirements filled RQ-0044

PE011
Test Model

Priority: Must

Who: Process Engineer
When / Where: During development, on the developer’s environment (on-
premises or in the cloud)
What: User evaluate the model
Why: To train the model with the provided training sequence

Acceptance Criteria If successful, the user is prompted with a confirmation message. If not, the user
is prompted with an error message

Requirements filled None. This requirement is a technical requirement that permits the indirect
fulfilment of other requirements.

PE012
Select production
data sources

Priority: Must

Who: Process Engineer
When / Where: During configuration, on the customer’s environment (on-
premises or in the cloud)
What: User selects the data sources to run the model
Why: To configure the data sources to be used to run the model

Acceptance Criteria The user can select the data sources that have been previously configured in the
platform

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 89 / 334

Requirements filled RQ-0044

PE013
Execute model

Priority: Must

Who: Process Engineer
When / Where: During development, on the customer’s environment (on-
premises or in the cloud)
What: User confirms the execution of the model
Why: To execute the optimisation model according to the provided configuration

Acceptance Criteria If successful, the user is prompted with a confirmation message. If not, the user
is prompted with an error message

Requirements filled RQ-0044, RQ-0049, RQ-0082, RQ-0098, RQ-0913, RQ-0918

PE014
Visualise Output Data

Priority: Must

Who: Process Engineer
When / Where: During development, on customer’s environment (on-premises
or in the cloud)
What: User visualises results of executing the model
Why: To visualise the data inferred from the optimisation model

Acceptance Criteria The user can visualize the optimisation model output data

Requirements filled RQ-0049, RQ-0098, RQ_0921, RQ_0923, RQ_0949

Figure 67: Prediction and Optimization Designer Features

3.8.3 Workflows

 Create Project

This workflow builds a new model in the Model Designer component based on the input
provided by the user. The main steps are:

• Create a new instance of a model project

• Allow the user to configure the project with its objective, time constraint and accuracy
constraint to get a list of model recommendations

• Update the model project with a user-selected algorithm

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 90 / 334

Figure 68: Create Project Sequence Diagram

 Load Model

This workflow loads the selected algorithm / model that is being used to solve the problem.
The main steps are:

• Find model from already existing developed models on the Models Repository

• Load the model on the Model Executor Runtime

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 91 / 334

Figure 69: Load Model Sequence Diagram

 Train model

This workflow trains a model instance in the Analytics and AI component based on the
provided training data configured by the user. The main steps are:

• Configure the training data sources

• Train the model instance with the provided data source

Figure 70: Train Model Sequence Diagram

 Test model

This workflow trains a model instance based on the provided training data configured by
the user. The main steps are:

• Configure the training data sources

• Train the model instance with the provided data source

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 92 / 334

Figure 71: Test Model Sequence Diagram

 Execute Model

This workflow involves using the Model Runtime to execute the model. The main steps
are:

• Configure the production data sources

• Run the model against the data source

Figure 72: Execute Model Sequence Diagram

 Visualize Output Data

This workflow retrieves the results from the model and represents the results in a
meaningful way for the user. The main steps are:

• Subscribe to the configured data sources for output data

• Update the results

• Interpret the results and present the information to the user

Figure 73: Visualize Output Data Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 93 / 334

3.8.4 Additional Issues

Additional issues have appeared after the description of the architecture. (If no additional
issues came up, just write “None.”).

Issue Description Next Steps Lead (Rationale)

Filled
Requirements

The following requirements were not
targeted specifically to task 7.1, but are
referenced as applicable to its functionality:
RQ_035, RQ_038, RQ_044, RQ_049, and
RQ_082

Discuss with
requirement
providers who to
solve the issue

T4.1 task lead

Interactions
with external
components

Model creation/upload, Model-loading and
Model execution are referenced to be
supported by other ZDMP components, but
as far as competencies are not clear enough
yet, they are identified generically

Discuss with
technical architecture
responsible and AI
component
responsible

Visualiser Model execution can produce simple and
complex results. Complex results can be
charts that can be executed and offered by
external.

Discuss with
technical architecture
responsible and AI
component
responsible

Input
mapping

Algorithms will run on data sources offered
by ZDMP IO component. Deeper
discussions with IO task leader are
necessary to establish interactions between
the model designer, runtime, and IO.

Discuss with IO
technical lead

Figure 74: Additional Issues Prediction and Optimization Designer

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 94 / 334

4 Enterprise Tier: Use-time

Enterprise level components create the environment necessary for the ZDMP platform.
This includes T5.2 Security Run-time, T6.2 Marketplace and T6.4/T6.5 Application Run-
time.

Figure 75: Enterprise Tier Components

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 95 / 334

4.1 Security Command Centre (T5.2)

4.1.1 Overall functional characterization & Context

The Security Command Centre is the main subcomponent of the security component
architecture. It orchestrates the services provided by the other security modules with the
aim of preventing and mitigating security incidents. This prevention is based on the
monitoring of all interactions between ZDMP assets and taking the appropriate actions
defined at the Security Command Centre.

4.1.2 Functions / Features

The foreseen functions and features of the Security Command Centre are the following:

• Global security administration: Security policies (eg password policies, access
control policies, certificate policies, anti-intrusion policies, etc) can be managed and
security status can be monitored in this GUI in real-time. Using this, security
administrators can supervise and control the security of the ZMDP platform

• User policies creation: Security administrators can register and edit roles for users
and zApps that permit access to ZDMP resources (eg to the storage component) in
this GUI

• Security policies creation: Security policies can be created in this GUI, by
associating roles to specific users and ZDMP assets. This process is conducted each
time that a new zApp is approved for installation, so that its access permissions are
well established. In addition, this component enforces the security policies, denying
unauthorised access to ZDMP resources. Only administrators can edit security
policies manually
Security certificates control: In this function, the installation of new root certificates
and the revocation of user certificates can be done. These actions are critical to keep
the ZDMP platform secure and can be triggered either manually by a security
administrator (eg caused by the exposure of a private key) or automatically (due to
the expiration of a certificate).

Subtask Subtask description
T52A001
Access to roles and
policies

Priority: Must

Who: Administrator
Where: In the Secure Authentication/Authorisation component
When: Runtime
What: Show current roles and policies
Why: Monitoring of user and ZDMP assets rights

Acceptance Criteria
The administrator was able to access roles and policies of ZDMP assets and
users

Requirements filled N/A

T52A002
CRUD roles

Priority: Must

Who: Administrator
Where: In the Secure Authentication/Authorisation component
When: Runtime
What: Perform CRUD operations on roles
Why: Assign roles to grant or deny access rights to ZDMP protected resources

Acceptance Criteria
The administrator was able to perform all CRUD operations on a role in the
Secure Authentication/Authorisation component

Requirements filled N/A

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 96 / 334

T52A003
CRUD user

Priority: Must

Who: Administrator
Where: In the Secure Authentication/Authorisation component
When: Runtime
What: Perform CRUD operations on users
Why: Provide access rights to users

Acceptance Criteria
The administrator was able to perform all CRUD operations on a user in the
Secure Authentication/Authorisation component

Requirements filled N/A

T52A004
CRUD security
policies

Priority: Must

Who: Administrator
Where: In the Secure Authentication/Authorisation component
When: Runtime
What: Perform CRUD operations on security policies
Why: Provide access rights to users and ZDMP assets

Acceptance Criteria
The administrator was able to perform all CRUD operations on security policies
in the Secure Authentication/Authorisation component

Requirements filled N/A

Figure 76: Security Command Centre Functions

4.1.3 Workflows

This section shows an overview of the main interaction between the Security Command
Centre with other modules and components.

 CRUD operations on users and ZDMP assets permissions

The Security Command Centre allows the authenticated administrator (via the Security
Command Centre UI) to verify the permissions required by a zApp and create the
corresponding roles, users and security policies on the Secure Authentication /
Authorisation component (also via the Secure AuthN/AuthS API component).

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 97 / 334

Figure 77: CRUD operations on users and ZDMP assets permissions

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 98 / 334

4.2 Installation Broker Service (T5.2)

4.2.1 Overall functional characterization & Context

The Installation Broker Service is the module that supports the Security
Command Centre in the downloading and installation of a new zApp.
Specifically, this module receives zApp packet downloading requests. Then,
this component assists the download of the specific packet from the Marketplace and
performs the corresponding signature verification. The direct download of zApps from the
Marketplace (T6.2) is not allowed for security reasons. Once the signature verification is
finished, this module requests the Security Command Centre the creation of the required
permissions and, if this permissions creation process is successful, the Installation Broker
Service forwards the zApp packet to the user through the Secure
Authentication/Authorisation component acting as a proxy. Similarly, the Installation Broker
Service also provides the zApp package to the Application Runtime component to control
the execution of such installed zApp.

4.2.2 Functions / Features

The functions and features of the Installation Broker Service are the following:

• ZApps download: Users request the Installation Broker Service the download of the
zApp package through the Secure Installation API. Then, the broker contacts the
Marketplace and gets the corresponding zApp package

• ZApps verification: The Installation Broker Service conducts the security checks,
such the manifest signature verification, on the downloaded zApp package

• ZApp permissions creation: When the security checks are successful, the Installation
Broker Service requests the Security Command Centre to create relationships
between the user, the zApp and the required permissions

Subtask Subtask description
T52A005
Download zApp
package

Priority: Must

Who: ZApp user
Where: In the Installation Broker Service module
When: Runtime
What: Request the download of the zApp package
Why: Install the corresponding zApp

Acceptance Criteria The Installation Broker Service obtained the corresponding zApp package

Requirements filled N/A

T52A006
Verify zApp signature

Priority: Must

Who: Installation Broker Service
Where: In the Installation Broker Service module
When: Runtime
What: Verify all signatures included in the zApp’s manifest
Why: Check integrity of the downloaded zApp package and ensure the identity of
the zApp developer

Acceptance Criteria The signature verification process was successful

Requirements filled N/A

T52A007 Priority: Must

Who: Installation Broker Service

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 99 / 334

Create zApp
permissions

Where: In the Secure Authentication/Authorisation component
When: Runtime
What: Request the creation of the different permissions required by the zApp,
which are specified in the manifest
Why: Establish permissions related to users, roles and security policies required
for the proper installation and operation of the zApp

Acceptance Criteria
zApp permission creation was confirmed by the Secure
Authentication/Authorisation component

Requirements filled N/A

T52A008
Deliver zApp package

Priority: Must

Who: Installation Broker Service
Where: In the Installation Broker Service module
When: Runtime
What: Send the zApp package to the requesting ZDMP asset and to the
Application Runtime component
Why: Enable the installation of the zApp

Acceptance Criteria
The zApp package was received by the Secure Authentication/Authorisation
component and forwarded to the corresponding ZDMP asset, and by the
Application Runtime component

Requirements filled N/A

Figure 78: Installation Broker Service Functions

4.2.3 Workflows

This section shows an overview of the main interaction between the Installation Broker
Service with other modules and components.

 Download and pre-installation security operations on a zApp

When an authenticated user requests to download a zApp (via API), the Installation Broker
Service receives the request and then, it contacts the Marketplace to get the
corresponding package. Subsequently, this module runs the signature verification process
over such package and requests to the Security Command Centre the corresponding
establishment of resources specified in the zApp manifest for the specific user (identified
by an access token).

Figure 79: Download and pre-installation security operations on a zApp

 Deliver the zApp package

The Installation Broker Service oversees delivering the corresponding zApp package to
the Secure Authentication/Authorisation component (acting as proxy) to be forwarded to

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 100 / 334

the requester ZDMP asset. Additionally, the zApp package is also delivered to the
Application Runtime component with the aim of enabling this component to control the
execution of such zApp.

Figure 80: Deliver the corresponding zApp package

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 101 / 334

4.3 Identity Service (T5.2)

4.3.1 Overall functional characterization & Context

The Identity Service is a module that is included in the Secure Authentication
/ Authorisation component. It conducts the authentication of ZDMP assets (eg
users, components, zApps, etc) trying to access a protected resource. The
Identity Service scheme considers the current industry guidelines and
standards regarding authentication and password management. Every
authentication policy and subject account is managed centrally from this module. In case
of a successful authentication, an associated access token is issued to the corresponding
ZDMP asset.

4.3.2 Functions / Features

The functions and features of the Identity Service are the following:

• Authentication receives and analyses authentication requests to decide if they are
legitimate or not. The defined authentication policies are applied, and the required
subject information is retrieved. Once the evaluations have been conducted, a
decision is made and if the authentication is valid, an access token is granted. This
access token is used subsequently in the authorisation process.

• ZDMP asset info and credentials management: ZDMP asset information and the
associated authentication credentials are stored under cryptographic protection

• Token management: The issued access tokens are stored which are those
associated to the different authenticated ZDMP assets

• Auth logging: Every authentication attempt, successful or not, is registered.
Authentication logs are an important source of information which could lead to the
identification of security incidents, such as brute force attacks. Typical events that
can be checked are:

• Successful ZDMP asset logins

• Failed ZDMP asset logins

• ZDMP asset account changes

• Password changes

Subtask Subtask description
T52A009
Create a new account

Priority: Must

Who: ZDMP asset
Where: In the Identity Service module
When: Runtime
What: Create a new account associated with a ZDMP asset
Why: Enable subsequent authentications and the granting of the corresponding
access tokens

Acceptance Criteria The new ZDMP asset account was successfully created

Requirements filled

RQ_0039, RQ_0073, RQ_0079, RQ_0081, RQ_0113, RQ_0241, RQ_0286, RQ_0423, RQ_0424,
RQ_0425, RQ_0426, RQ_0427, RQ_0428, RQ_0429, RQ_0430, RQ_0431, RQ_0432, RQ_0433,
RQ_0434, RQ_0435, RQ_0436, RQ_0437, RQ_0438, RQ_0439, RQ_0440, RQ_0441, RQ_0442,
RQ_0443, RQ_0444, RQ_0469, RQ_0470, RQ_0471, RQ_0472, RQ_0473, RQ_0474, RQ_0475,
RQ_0476, RQ_0477, RQ_0478, RQ_0479, RQ_0480, RQ_0481, RQ_0482, RQ_0483, RQ_0484,
RQ_0485, RQ_0486, RQ_0487, RQ_0488, RQ_0526, RQ_0527, RQ_0528, RQ_0529, RQ_0530,
RQ_0531, RQ_0532, RQ_0533, RQ_0534, RQ_0535, RQ_0536, RQ_0537, RQ_0538, RQ_0539,
RQ_0540, RQ_0541, RQ_0542, RQ_0543, RQ_0544, RQ_0545, RQ_0546, RQ_0547, RQ_0548,
RQ_0586, RQ_0587, RQ_0588, RQ_0589, RQ_0590, RQ_0591, RQ_0592, RQ_0593, RQ_0594,
RQ_0595, RQ_0596, RQ_0597, RQ_0598, RQ_0599, RQ_0600, RQ_0601, RQ_0602, RQ_0603,

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 102 / 334

RQ_0604, RQ_0605, RQ_0606, RQ_0607, RQ_0615, RQ_0619, RQ_0620, RQ_0621, RQ_0622,
RQ_0668, RQ_0672, RQ_0675, RQ_0727, RQ_0734

T52A010
Authentication

Priority: Must

Who: ZDMP asset
Where: In the Identity Service module
When: Runtime
What: Authentication of a particular ZDMP asset
Why: Get an ZDMP asset-associated access token to be used in subsequent
authorisation operations

Acceptance Criteria A new access token was issued and received by the corresponding ZDMP asset

Requirements filled

RQ_0039, RQ_0073, RQ_0079, RQ_0081, RQ_0113, RQ_0241, RQ_0286, RQ_0423, RQ_0424,
RQ_0425, RQ_0426, RQ_0427, RQ_0428, RQ_0429, RQ_0430, RQ_0431, RQ_0432, RQ_0433,
RQ_0434, RQ_0435, RQ_0436, RQ_0437, RQ_0438, RQ_0439, RQ_0440, RQ_0441, RQ_0442,
RQ_0443, RQ_0444, RQ_0469, RQ_0470, RQ_0471, RQ_0472, RQ_0473, RQ_0474, RQ_0475,
RQ_0476, RQ_0477, RQ_0478, RQ_0479, RQ_0480, RQ_0481, RQ_0482, RQ_0483, RQ_0484,
RQ_0485, RQ_0486, RQ_0487, RQ_0488, RQ_0526, RQ_0527, RQ_0528, RQ_0529, RQ_0530,
RQ_0531, RQ_0532, RQ_0533, RQ_0534, RQ_0535, RQ_0536, RQ_0537, RQ_0538, RQ_0539,
RQ_0540, RQ_0541, RQ_0542, RQ_0543, RQ_0544, RQ_0545, RQ_0546, RQ_0547, RQ_0548,
RQ_0586, RQ_0587, RQ_0588, RQ_0589, RQ_0590, RQ_0591, RQ_0592, RQ_0593, RQ_0594,
RQ_0595, RQ_0596, RQ_0597, RQ_0598, RQ_0599, RQ_0600, RQ_0601, RQ_0602, RQ_0603,
RQ_0604, RQ_0605, RQ_0606, RQ_0607, RQ_0615, RQ_0619, RQ_0620, RQ_0621, RQ_0622,
RQ_0668, RQ_0672, RQ_0675, RQ_0727, RQ_0734

Figure 81: Identity Service Features

4.3.3 Workflows

This section shows an overview of the main interaction between the Identity Service with
other modules and components.

 Account creation and authentication

The Identity Service allows the ZDMP assets to create an account and register certain
attributes associated to them. Once an account is created, the corresponding ZDMP asset
is enabled to launch the authentication process by using the user and password previously
registered.

Figure 82: Account creation and authentication processes of a ZDMP asset

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 103 / 334

4.4 Authorisation Service (T5.2)

4.4.1 Overall functional characterization & Context

The Authorisation Service is another module of the Secure
Authentication/Authorisation component. Authorisation to access protected
resources is a complex task as it involves advanced security concepts
(identity-based, role-based access control, attribute-based access control,
etc). Most developers embed the authorisation logic within the application
code, which makes it hard to maintain, evolve, and integrate with external
services providing extra authorisation attributes. To reduce the authorisation
logic and avoid these issues, the Authorisation Service takes advantage of flexible and
standard-compliant authorisation schemes.

4.4.2 Functions / Features

The functions and features of the Authorisation Service are the following:

• Policy enforcement: Every request made from a specific ZDMP asset is intercepted
and transformed into a well-formed eXtensible Access Control Markup Language
(XACML) request, to be approved or rejected. Only if the request is approved, it is
forwarded

• Policy decision: Every XACML request is assessed and answered (ie, acceptance
or rejection). The decisions are primarily based on the authorisation policies
administrated. Nevertheless, it is possible to include other external conditions to
decide

• Policy administration: Authorisation policies are stored and retrieved when
requested. These authorisation policies are created and edited under request from
the Security Command Centre module

• Policy information provision: Additional attributes, coming from multiple sources,
are retrieved to enable more informed decision during the authorisation process. This
enables the security model, based on Role-based Access Control (RBAC), to be
extended with Attribute-Based Access Control (ABAC), also referred to as RBAC-
ABAC, which is the recommended access control model today.

x

Subtask Subtask description
T52A011
Resource access
authorisation

Priority: Must

Who: ZDMP asset
Where: In the Authorisation Service module
When: Runtime
What: Get authorised access to protected resources
Why: Protect resources from unauthorised accesses

Acceptance Criteria ZDMP asset was able to access a protected resource

Requirements filled

RQ_0039, RQ_0073, RQ_0079, RQ_0081, RQ_0113, RQ_0241, RQ_0286, RQ_0423, RQ_0424,
RQ_0425, RQ_0426, RQ_0427, RQ_0428, RQ_0429, RQ_0430, RQ_0431, RQ_0432, RQ_0433,
RQ_0434, RQ_0435, RQ_0436, RQ_0437, RQ_0438, RQ_0439, RQ_0440, RQ_0441, RQ_0442,
RQ_0443, RQ_0444, RQ_0469, RQ_0470, RQ_0471, RQ_0472, RQ_0473, RQ_0474, RQ_0475,
RQ_0476, RQ_0477, RQ_0478, RQ_0479, RQ_0480, RQ_0481, RQ_0482, RQ_0483, RQ_0484,
RQ_0485, RQ_0486, RQ_0487, RQ_0488, RQ_0526, RQ_0527, RQ_0528, RQ_0529, RQ_0530,
RQ_0531, RQ_0532, RQ_0533, RQ_0534, RQ_0535, RQ_0536, RQ_0537, RQ_0538, RQ_0539,
RQ_0540, RQ_0541, RQ_0542, RQ_0543, RQ_0544, RQ_0545, RQ_0546, RQ_0547, RQ_0548,
RQ_0586, RQ_0587, RQ_0588, RQ_0589, RQ_0590, RQ_0591, RQ_0592, RQ_0593, RQ_0594,
RQ_0595, RQ_0596, RQ_0597, RQ_0598, RQ_0599, RQ_0600, RQ_0601, RQ_0602, RQ_0603,
RQ_0604, RQ_0605, RQ_0606, RQ_0607, RQ_0615, RQ_0619, RQ_0620, RQ_0621, RQ_0622,
RQ_0668, RQ_0672, RQ_0675, RQ_0727, RQ_0734

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 104 / 334

Figure 83: Authorization Service Features

4.4.3 Workflows

This section shows an overview of the main interaction between the Authorisation Service
with other modules and components.

 Request authorised access to protected resources

The Authorisation Service allows the ZDMP assets to request access to protected
resources. To accept or deny such requests, this component bases on the corresponding
access token and the stored authorisation policies.

Figure 84: Request authorised access to a protected resource

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 105 / 334

4.5 Intrusion Detection Service (T5.2)

4.5.1 Overall functional characterization & Context

The Intrusion Detection Service is another the Secure Authentication/Authorisation
component. This module works together with another service called Authorisation Service,
by analysing all requests and generating alerts and logs if any suspicious activity is
detected. Specifically, the Intrusion Detection Service conducts certain verifications over
each authorisation request, such as pattern analysis in the access token or detecting
cybersecurity attacks, such as Denial of Service (DoS).

4.5.2 Functions / Features

The functions and features of the Intrusion Detection Service is the following:

• Detect suspicious activity: The Intrusion Detection Service monitors all
communications among ZDMPS assets and Authorisation Service to find out
possible cases of cyberattacks

• Logging suspicious activity: When the Intrusion Detection Service detects any
suspicious activity, this module registers it in a secure log database, which can be
analysed by the administrators

• Generate alerts: In parallel with the logging task, this module also sends several
types of alerts to notify the appropriate recipients (eg administrators or ZDMP users)

Subtask Subtask description
T52A012
React to a suspicious
activity

Priority: Must

Who: Detection Intrusion Service
Where: In the Detection Intrusion Service module
When: Runtime
What: Detect, log, and alert any suspicious activity
Why: Protect resources from intrusions

Acceptance Criteria Detection Intrusion Service was able to detect a suspicious activity pattern

Requirements filled

RQ_0039, RQ_0073, RQ_0079, RQ_0081, RQ_0113, RQ_0241, RQ_0286, RQ_0423, RQ_0424,
RQ_0425, RQ_0426, RQ_0427, RQ_0428, RQ_0429, RQ_0430, RQ_0431, RQ_0432, RQ_0433,
RQ_0434, RQ_0435, RQ_0436, RQ_0437, RQ_0438, RQ_0439, RQ_0440, RQ_0441, RQ_0442,
RQ_0443, RQ_0444, RQ_0469, RQ_0470, RQ_0471, RQ_0472, RQ_0473, RQ_0474, RQ_0475,
RQ_0476, RQ_0477, RQ_0478, RQ_0479, RQ_0480, RQ_0481, RQ_0482, RQ_0483, RQ_0484,
RQ_0485, RQ_0486, RQ_0487, RQ_0488, RQ_0526, RQ_0527, RQ_0528, RQ_0529, RQ_0530,
RQ_0531, RQ_0532, RQ_0533, RQ_0534, RQ_0535, RQ_0536, RQ_0537, RQ_0538, RQ_0539,
RQ_0540, RQ_0541, RQ_0542, RQ_0543, RQ_0544, RQ_0545, RQ_0546, RQ_0547, RQ_0548,
RQ_0586, RQ_0587, RQ_0588, RQ_0589, RQ_0590, RQ_0591, RQ_0592, RQ_0593, RQ_0594,
RQ_0595, RQ_0596, RQ_0597, RQ_0598, RQ_0599, RQ_0600, RQ_0601, RQ_0602, RQ_0603,
RQ_0604, RQ_0605, RQ_0606, RQ_0607, RQ_0615, RQ_0619, RQ_0620, RQ_0621, RQ_0622,
RQ_0668, RQ_0672, RQ_0675, RQ_0727, RQ_0734

Figure 85: Intrusion Detection Service Features

4.5.3 Workflows

This section shows an overview of the main interaction between the Intrusion Detection
Service with other modules and components.

 React to a suspicious activity

The Intrusion Detection Service avoids intrusions to the ZDMP platform. Once an intrusion
is detected, this module logs such suspicious activity in a secure database to provider

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 106 / 334

traces of this activity to the administrators. These traces are of use to administrators to find
out potentially unauthorised accesses and to adapt the intrusion detection rules according
to normal behaviour of ZDMP assets.

Figure 86: React to a suspicious activity

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 107 / 334

4.6 Secure Communications PKI Service (T5.2)

4.6.1 Overall functional characterization & Context

The communications Public Key Infrastructure (PKI) service is the
subcomponent that provides the credentials (digital certificates and keys)
and functions required to further establish secure communications between
physical devices, gateways, and servers identified as ZDMP Assets. Every
ZDMP communication is initiated with a handshake where security
credentials are exchanged and mutually verified. This handshake provides the security
baseline for the mutual authentication of the communication devices, and for agreement
on the security configuration of the communications. As security credentials are critical
elements, they are managed according to international recommendations (eg NIST
recommendations), which establish requirements regarding maximum usage periods,
minimum key lengths, etc. The PKI service, in cooperation with the Security Command
Centre, integrates functions to comply with these recommendations.

4.6.2 Functions / Features

The functions and features of the Communications PKI Service are the following:

• Certificate issue: New client certificates are created. These certificates include the
details that permit the identification of the subject (physical device, gateway, or
server)

• Certificate revocation or renewal: Certificates are registered that are out-of-date or
have been compromised (in Certificate Revocation Lists, CRLs), to guarantee that
their use is discontinued. The Security Command Centre can request clients to
renew their certificate to avoid revocations

• Certificate retrieval: Stored certificates are retrieved based on their identifying details
(eg certificate subject)

• Root and intermediate certificate installation: Where new root and intermediate
certificates are installed, so that they can be used to sign and verify other (client)
certificates

Subtask Subtask description
T52A013
Issue new certificates

Priority: Must

Who: Physical devices, gateways, servers
Where: In Communications PKI Service module
When: Before establishing new connection sockets
What: Request a new ZDMP client digital certificates
Why: Enable secure communications

Acceptance Criteria A physical device (or any other ZDMP asset) received its own digital certificate

Requirements filled
RQ_0025, RQ_0033, RQ_0039, RQ_0043, RQ_0079, RQ_0081, RQ_0093, RQ_0099, RQ_0100,
RQ_0113, RQ_0116, RQ_0136, RQ_0198, RQ_0241, RQ_0286

T52A014
Install root
certificates

Priority: Must

Who: Security Command Centre
Where: In Communications PKI Service module
When: Before issuing client certificates with the Comms PKI service
What: Deliver root certificates to ZDMP PKI
Why: Update ZDMP chain of trust

Acceptance Criteria The ZDMP PKI installed the new root or intermediate certificate

Requirements filled
RQ_0025, RQ_0033, RQ_0039, RQ_0043, RQ_0079, RQ_0081, RQ_0093, RQ_0099, RQ_0100,
RQ_0113, RQ_0116, RQ_0136, RQ_0198, RQ_0241, RQ_0286

T52A015 Priority: Should

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 108 / 334

Revoke certificates Who: Security Command Centre
Where: In Communications PKI Service module
When: After permanent expiration or detecting an invalid certificate
What: Revoke a certificate
Why: Prevent insecure certificates from enabling trusted communications

Acceptance Criteria The certificate was revoked

Requirements filled
RQ_0025, RQ_0033, RQ_0039, RQ_0043, RQ_0079, RQ_0081, RQ_0093, RQ_0099, RQ_0100,
RQ_0113, RQ_0116, RQ_0136, RQ_0198, RQ_0241, RQ_0286

T52A016
Renew certificates

Priority: Should

Who: Security Command Centre
Where: In Communications PKI Service module
When: After expiration of a client certificate that still needs secure comms.
What: Renew a certificate
Why: Prevent expired certificates from enabling trusted communications

Acceptance Criteria The certificate was renewed

Requirements filled
RQ_0025, RQ_0033, RQ_0039, RQ_0043, RQ_0079, RQ_0081, RQ_0093, RQ_0099, RQ_0100,
RQ_0113, RQ_0116, RQ_0136, RQ_0198, RQ_0241, RQ_0286

T52A017
Certificate retrieval

Priority: Must

Who: Security Command Centre or T6.2 Security Designer
Where: In Communications PKI Service module
When: On demand to check certificate details and secure links
What: Retrieve certificates from IDS via Comms. PKI Service
Why: Manage ZDMP chain of trust, check validity against credentials or expiry
dates

Acceptance Criteria
The Security Command Centre received a requested certificate. If the request is
coming from T6.2, the Security designer received requested certificate list.

Requirements filled
RQ_0025, RQ_0033, RQ_0039, RQ_0043, RQ_0079, RQ_0081, RQ_0093, RQ_0099, RQ_0100,
RQ_0113, RQ_0116, RQ_0136, RQ_0198, RQ_0241, RQ_0286

Figure 87: Secure Communications PKI Service Features

4.6.3 Workflows

 Issue new certificates

The Comms. PKI Service provides ZDMP Assets with the possibility to request a client
certificate that enables establishing secure channels with other elements inside ZDMP
runtime platform. Upon receiving the request, the Comms. PKI Service validates the
parameters involved, such as identifying if such client already has a valid certificate. If
there is the need to issue a new certificate, the PKI service creates it, replies to the client,
and stores the new certificate in the corresponding IDS.

The main steps / functionalities are:

• Invoking the Comms. PKI Service through the API to request a certificate

• The Comms. PKI Service determines the necessity of a new certificate

• If the request fails, an error message is sent to the Asset

• The Comms. PKI Service creates the certificate and stores it in the IDS

• The Comms. PKI Service, through the API, sends the certificate to the client

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 109 / 334

Figure 88: Issue New Certificates Sequence Diagram

 Install Root certificates

The Security Command Centre can install root or intermediate certificates in the Comms.
PKI Service, enabling the service to sign client certificates for ZDMP assets that are
trusted for being under a root Certificate Authority (CA).

The main steps / functionalities are:

• The Security Command Centre requests the installation of a root/intermediate
certificate to the Comms. PKI Service

• The Comms. PKI Service installs and stores the received certificate

• The Comms. PKI Service confirms the installation or informs with an error if fails

Figure 89: Install Root Certificates Sequence Diagram

 Revoke certificates

The Security Command Centre can request the revocation of a client certificate to the
Comms. PKI Service. Upon receiving the request, the Comms. PKI Service validates the
parameters of the certificate and adds it to the Certificate Revocation List (CRL), which
needs to be updated to analyse the validity of certificates exchanged in the platform
communications.

The main steps / functionalities are:

• The Security Command Centre requests the revocation of a certificate to the Comms.
PKI Service

• The Comms. PKI Service checks details of revoked certificate and adds it to the CRL

• The Comms. PKI Service confirms the success or failure of the revocation

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 110 / 334

Figure 90: Revoke Certificates Sequence Diagram

 Renew certificates

The Security Command Centre can request a ZDMP Asset to renew its client certificate to
the Comms. PKI Service. The client then sends the request via Comms. PKI API. Upon
receiving the request via the API, the Comms. PKI Service validates the parameters of the
certificate, updates the expiration date of given certificate (also in the IDS) and replies to
the client with the updated certificate.

The main steps / functionalities are:

• The Security Command Centre requests the renewal of a certificate to a ZDMP
Asset, via the API

• The ZDMP Asset invokes the Comms. PKI Service through the API to request an
updated certificate

• The Comms. PKI Service validates the details of the certificate

• If renewal fails, an error message is propagated from PKI service towards the SCC.

• The Comms. PKI Service updates the certificate and stores it in the IDS

• The Comms. PKI Service, through the API, sends the certificate to the client

Figure 91: Renew Certificates Sequence Diagram

 Retrieve certificates

The Security Command Centre can retrieve certificates in the Comms. PKI Service,
enabling the SCC to check further actions needed to ensure the chain of trust in the
platform, such as requesting the renewal or revocation of client certificates. It is also
needed to check which secure links are stored in the certificates IDS, to reply to queries
from T6.2 Security Designer.

The main steps / functionalities are:

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 111 / 334

• The Security Command Centre requests the details of a certificate to the Comms.
PKI Service

• The Comms. PKI Service retrieves the certificate from the IDS

• The Comms. PKI Service sends back the requested certificate to the Security
Command Centre

Figure 92: Retrieve Certificates Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 112 / 334

4.7 Marketplace (T6.2)

4.7.1 Overall functional characterisation & Context

The Marketplace component has a similar business model to the Google
Play or the Apple App Store, allowing end users to search for and buy
applications and services from manufacturing sector. Also, users can
post their specifications and demand specific applications and
developers can build their own applications and share them in the
Marketplace. The main building blocks of the Marketplace component and their interactions
were detailed in the Architecture Document.

4.7.2 Functions / Features

• User authentication: this is about access rights of users connected to Marketplace.
This is facilitated by the User Management & Authorisation via T5.2 Security Run-
time component

• Negotiation: this functionality allows ZDMP users and Application Providers to get in
touch and negotiate with each other about possible new ZD Assets and the
conditions of the development. This is possible due to Negotiation Environment
component accessible from Negotiation UI

• Browse items: through the Store Frontend UI the users can browse and examine ZD
Assets and their individual information such as screenshots, usage fees, and reviews
or ratings of other users, as well as licensing policies and payment methods.

• Administration: this feature allows ZD Asset Providers and administrators to
manage and upload their items and view usage and error statistics or manage the
Marketplace as a whole. Both types of users are managed through granted rights
and roles. Furthermore, it is used by support users to help users with potential
issues.

• Place order: this feature allows users to initiate the buying process and it is
managed by the Order Manager module. All information regarding orders are stored
in the Order Database component.

• Issue invoice: this allows users to receive invoices for their bought ZD Assets and
licenses. It is executed by the Invoicing module connected to Order Manager module.
Invoices are sent to the users by the means of Notification module.

• Notification: all the information regarding the items from Marketplace exchanged
between the users and administrators exchanged are possible due to the Notification
Manager module linked directly to Human Collaboration component.

• Payment: this feature manages all exchanges of data with external payment
providers, due to Payment Manager module. Besides payments, this include
cancellation- and refund-handling, and fraud-prevention.

• Record usage data: for pay-per-use items it is necessary to collect and store usage
data to invoice the service. This is possible due to the Usage Data Interface which is
a gateway to the Usage Analytics & Error Reporting module for the ZDMP platform
which provides this information from the ZD Assets.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 113 / 334

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
T62A001
Connect to Marketplace

Priority: Must

Who: Marketplace
Where: Anywhere
When: Anytime
What: Connect to Marketplace and get user access rights set via T5.2
Security Run-time component
Why: So that the user can access the UI and functionalities of the
Marketplace

Acceptance Criteria User successfully connected

Requirements filled N/A

T62A002
User Negotiation

Priority: Must

Who: Marketplace
Where: Anywhere
When: Anytime
What: Users and application providers negotiate with each other about
possible new ZD Assets and the conditions of the development
Why: So that the users can request applications based on their
specifications

Acceptance Criteria Communication between users and developers facilitated.

Requirements filled N/A

T62A003
Search items

Priority: Must

Who: Marketplace
Where: Anywhere
When: Anytime
What: Browse and search for specific ZDMP assets
Why: So that the user can examine assets and their individual
information such as screenshots, usage fees, and reviews or ratings of
other users.

Acceptance Criteria Asset successfully found

Requirements filled N/A

T62A004
Upload items

Priority: Must

Who: Marketplace
Where: Anywhere
When: Anytime
What: Administrators and providers upload ZDMP assets
Why: So that the users can search for specific assets

Acceptance Criteria Asset successfully uploaded

Requirements filled N/A

T62A005
Place Order

Priority: Must

Who: Marketplace
Where: Anywhere
When: Anytime
What: User make an order for a specific asset and save it in Order
Database
Why: So that the user can buy the specific asset

Acceptance Criteria Order successfully saved

Requirements filled N/A

T62A006 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 114 / 334

Issue invoice Who: Marketplace
Where: Anywhere
When: Anytime
What: The Invoicing module creates an invoice for the order saved

Why: So that the user can pay for the chosen asset

Acceptance Criteria Invoice successfully created.

Requirements filled None

T62A007
Notification

Priority: Must

Who: Marketplace
Where: Anywhere
When: Anytime
What: User receives information regarding the items
Why: So that the user can be informed about a specific item

Acceptance Criteria None

Requirements filled Information sent and received successfully

T62A008
Payment

Priority: Must

Who: Marketplace
Where: Anywhere
When: Anytime
What: User pays the invoice for the chosen asset
Why: So that the buying process can be processed

Acceptance Criteria Payment successfully done

Requirements filled None

T62A009
Record Usage Data

Priority: Must

Who: Marketplace
Where: Anywhere
When: Anytime
What: Collect and store usage data for pay-per-use items
Why: So that the pay-per-use items can be invoiced

Acceptance Criteria Usage data successfully saved

Requirements filled None

Figure 93: Marketplace Features

4.7.3 Workflows

The following sub-sections describe the sequence diagrams of the Marketplace
component.

 Connect to Marketplace

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 115 / 334

Figure 94: Connect to marketplace sequence diagram

 User Negotiation

The following diagram explains this function and the necessary interactions with other
components.

Figure 95: User negotiation sequence diagram

 Search items

The following diagram explains this function and the necessary interactions with other
components.

Figure 96: Search items sequence diagram

 Upload items

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 116 / 334

Figure 97: Upload items sequence diagram

 Place order

The following diagram explains this function and the necessary interactions with other
components.

Figure 98: Place order sequence diagram

 Issue invoice and notification

The following diagram explains this function and the necessary interactions with other
components.

Figure 99: Issue invoice and notification sequence diagram

 Payment

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 117 / 334

Figure 100: Payment sequence diagram

 Record usage data and invoicing

The following diagram explains this function and the necessary interactions with other
components.

Figure 101: Record usage data and invoicing sequence diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 118 / 334

4.8 Storage (T6.2)

4.8.1 Overall functional characterisation & Context

The Storage component is represented by the ZDMP platform data lake
that hosts all ZDMP components’ data, insuring their persistence and
processing. This component acts as a central store of all enterprise
data including back-up copies, machine learning models, reports, and
anything else that needs to be accessed centrally. The data storage
includes structured data from relational databases, semi-structured data as XML and
JSON files, binary data as images and videos, as well as application components running
as microservices.

4.8.2 Functions / Features

• File Management: This functionality uses Files Repository module that receives
requests specific files management commands from Data Manager and serves the
Binary Data Input API, Binary Data Output API and Cloud API, according to the
security policies that user must have

• Database Management: This feature deals with both SQL and NoSQL databases
hosted in Storage, which are used by most of components of ZDMP. It consists of
receiving SQL commands and other specific data requests and retrieve records and
structured data formats (ie JSON, BSON, XML) to users, according to data policies
assigned. This feature is done by database commands received by Data
Management module through Storage Frontend UI and input API and records and
files input and output through specific database input and output API

• Storage Administration: This represents file repository and database administration
commands sent through Storage Frontend UI

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
T62B001
Connect to file
repository

Priority: Must

Who: Storage
Where: Anywhere
When: Anytime
What: Access and opens filesystem of the data source
Why: So that a file transfer can be possible

Acceptance Criteria Application connected successfully

Requirements filled N/A

T62B002
Connect to SQL
database

Priority: Must

Who: Storage
Where: Anywhere
When: Anytime
What: Connect to a SQL database
Why: So that SQL operations can be run

Acceptance Criteria Database successfully connected

Requirements filled RQ_0015, RQ_0017, RQ_0020, RQ_0022, RQ_0023, RQ_0027, RQ_0030, RQ_0031, RQ_0032,
RQ_0040, RQ_0085, RQ_0117, RQ_0119, RQ_0156, RQ_0157, RQ_0158, RQ_0160, RQ_0184,
RQ_0185, RQ_0192, RQ_0214, RQ_0221, RQ_0249, RQ_0250, RQ_0251, RQ_0252, RQ_0255,
RQ_0285, RQ_0288, RQ_0324, RQ_0381, RQ_0382, RQ_0383, RQ_0384, RQ_0385, RQ_0386,
RQ_0412, RQ_0413, RQ_0414, RQ_0415, RQ_0416, RQ_0417, RQ_0418, RQ_0419, RQ_0420,
RQ_0421, RQ_0422, RQ_0460, RQ_0461, RQ_0462, RQ_0463, RQ_0466, RQ_0467, RQ_0468,
RQ_0515, RQ_0516, RQ_0517, RQ_0518, RQ_0519, RQ_0520, RQ_0521, RQ_0522, RQ_0523,

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 119 / 334

RQ_0524, RQ_0525, RQ_0575, RQ_0576, RQ_0577, RQ_0578, RQ_0579, RQ_0580, RQ_0581,
RQ_0582, RQ_0583, RQ_0584, RQ_0585, RQ_0623, RQ_0628, RQ_0629, RQ_0630, RQ_0631,
RQ_0632, RQ_0633, RQ_0634, RQ_0635, RQ_0636, RQ_0637, RQ_0646, RQ_0647, RQ_0648,
RQ_0649, RQ_0650, RQ_0651, RQ_0652, RQ_0653, RQ_0654, RQ_0655, RQ_0656, RQ_0657,
RQ_0658, RQ_0659, RQ_0660, RQ_0681, RQ_0682, RQ_0683, RQ_0684, RQ_0685, RQ_0705,
RQ_0707, RQ_0708, RQ_0709, RQ_0710, RQ_0711, RQ_0712, RQ_0713, RQ_0714, RQ_0715,
RQ_0716, RQ_0717, RQ_0718, RQ_0719, RQ_0740, RQ_0741, RQ_0742, RQ_0743, RQ_0744,
RQ_0745, RQ_0746, RQ_0747, RQ_0748, RQ_0749, RQ_0750, RQ_0751, RQ_0752, RQ_0753,
RQ_0763, RQ_0764, RQ_0765, RQ_0766, RQ_0767, RQ_0769, RQ_0770, RQ_0771, RQ_0772,
RQ_0773, RQ_0774, RQ_0775, RQ_0776, RQ_0777, RQ_0778, RQ_0794, RQ_0799, RQ_0801,
RQ_0802, RQ_0803, RQ_0804, RQ_0805, RQ_0806, RQ_0807, RQ_0808, RQ_0809, RQ_0810,
RQ_0811, RQ_0812, RQ_0814, RQ_0830, RQ_0831, RQ_0832, RQ_0833, RQ_0834, RQ_0835,
RQ_0836, RQ_0837, RQ_0838, RQ_0851, RQ_0852, RQ_0853, RQ_0854, RQ_0855, RQ_0856,
RQ_0857, RQ_0858, RQ_0859, RQ_0861, RQ_0862, RQ_0863, RQ_0865, RQ_0866, RQ_0870,
RQ_0871, RQ_0875, RQ_0876, RQ_0877, RQ_0878, RQ_0889, RQ_0890, RQ_0891, RQ_0892,
RQ_0893, RQ_0894, RQ_0906, RQ_0961, RQ_0962, RQ_0984, RQ_0985, RQ_0994

T62B003
Connect to NoSQL
database

Priority: Must

Who: Storage
Where: Anywhere
When: Anytime
What: Connect to a NoSQL database
Why: So that specific NoSQL database operations can be performed

Acceptance Criteria Database successfully connected

Requirements filled RQ_0015, RQ_0017, RQ_0020, RQ_0022, RQ_0023, RQ_0027, RQ_0030, RQ_0031, RQ_0032,
RQ_0040, RQ_0085, RQ_0117, RQ_0119, RQ_0156, RQ_0157, RQ_0158, RQ_0160, RQ_0184,
RQ_0185, RQ_0192, RQ_0214, RQ_0221, RQ_0249, RQ_0250, RQ_0251, RQ_0252, RQ_0255,
RQ_0285, RQ_0288, RQ_0324, RQ_0381, RQ_0382, RQ_0383, RQ_0384, RQ_0385, RQ_0386,
RQ_0412, RQ_0413, RQ_0414, RQ_0415, RQ_0416, RQ_0417, RQ_0418, RQ_0419, RQ_0420,
RQ_0421, RQ_0422, RQ_0460, RQ_0461, RQ_0462, RQ_0463, RQ_0466, RQ_0467, RQ_0468,
RQ_0515, RQ_0516, RQ_0517, RQ_0518, RQ_0519, RQ_0520, RQ_0521, RQ_0522, RQ_0523,
RQ_0524, RQ_0525, RQ_0575, RQ_0576, RQ_0577, RQ_0578, RQ_0579, RQ_0580, RQ_0581,
RQ_0582, RQ_0583, RQ_0584, RQ_0585, RQ_0623, RQ_0628, RQ_0629, RQ_0630, RQ_0631,
RQ_0632, RQ_0633, RQ_0634, RQ_0635, RQ_0636, RQ_0637, RQ_0646, RQ_0647, RQ_0648,
RQ_0649, RQ_0650, RQ_0651, RQ_0652, RQ_0653, RQ_0654, RQ_0655, RQ_0656, RQ_0657,
RQ_0658, RQ_0659, RQ_0660, RQ_0681, RQ_0682, RQ_0683, RQ_0684, RQ_0685, RQ_0705,
RQ_0707, RQ_0708, RQ_0709, RQ_0710, RQ_0711, RQ_0712, RQ_0713, RQ_0714, RQ_0715,
RQ_0716, RQ_0717, RQ_0718, RQ_0719, RQ_0740, RQ_0741, RQ_0742, RQ_0743, RQ_0744,
RQ_0745, RQ_0746, RQ_0747, RQ_0748, RQ_0749, RQ_0750, RQ_0751, RQ_0752, RQ_0753,
RQ_0763, RQ_0764, RQ_0765, RQ_0766, RQ_0767, RQ_0769, RQ_0770, RQ_0771, RQ_0772,
RQ_0773, RQ_0774, RQ_0775, RQ_0776, RQ_0777, RQ_0778, RQ_0794, RQ_0799, RQ_0801,
RQ_0802, RQ_0803, RQ_0804, RQ_0805, RQ_0806, RQ_0807, RQ_0808, RQ_0809, RQ_0810,
RQ_0811, RQ_0812, RQ_0814, RQ_0830, RQ_0831, RQ_0832, RQ_0833, RQ_0834, RQ_0835,
RQ_0836, RQ_0837, RQ_0838, RQ_0851, RQ_0852, RQ_0853, RQ_0854, RQ_0855, RQ_0856,
RQ_0857, RQ_0858, RQ_0859, RQ_0861, RQ_0862, RQ_0863, RQ_0865, RQ_0866, RQ_0870,
RQ_0871, RQ_0875, RQ_0876, RQ_0877, RQ_0878, RQ_0889, RQ_0890, RQ_0891, RQ_0892,
RQ_0893, RQ_0894, RQ_0906, RQ_0961, RQ_0962, RQ_0984, RQ_0985, RQ_0994

T62B004
Receive file
command

Priority: Must

Who: Storage
Where: Anywhere
When: Anytime
What: Receive a valid file transfer command
Why: So that a file operation can be performed

Acceptance Criteria File command validated

Requirements filled N/A

T62B005
Receive SQL
command

Priority: Must

Who: Storage
Where: Anywhere
When: Anytime
What: Receive a valid SQL command.
Why: So that a database operation can be executed.

Acceptance Criteria SQL command validated.

Requirements filled RQ_0015, RQ_0017, RQ_0020, RQ_0022, RQ_0023, RQ_0027, RQ_0030, RQ_0031, RQ_0032,
RQ_0040, RQ_0085, RQ_0117, RQ_0119, RQ_0156, RQ_0157, RQ_0158, RQ_0160, RQ_0184,
RQ_0185, RQ_0192, RQ_0214, RQ_0221, RQ_0249, RQ_0250, RQ_0251, RQ_0252, RQ_0255,
RQ_0285, RQ_0288, RQ_0324, RQ_0381, RQ_0382, RQ_0383, RQ_0384, RQ_0385, RQ_0386,
RQ_0412, RQ_0413, RQ_0414, RQ_0415, RQ_0416, RQ_0417, RQ_0418, RQ_0419, RQ_0420,
RQ_0421, RQ_0422, RQ_0460, RQ_0461, RQ_0462, RQ_0463, RQ_0466, RQ_0467, RQ_0468,
RQ_0515, RQ_0516, RQ_0517, RQ_0518, RQ_0519, RQ_0520, RQ_0521, RQ_0522, RQ_0523,

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 120 / 334

RQ_0524, RQ_0525, RQ_0575, RQ_0576, RQ_0577, RQ_0578, RQ_0579, RQ_0580, RQ_0581,
RQ_0582, RQ_0583, RQ_0584, RQ_0585, RQ_0623, RQ_0628, RQ_0629, RQ_0630, RQ_0631,
RQ_0632, RQ_0633, RQ_0634, RQ_0635, RQ_0636, RQ_0637, RQ_0646, RQ_0647, RQ_0648,
RQ_0649, RQ_0650, RQ_0651, RQ_0652, RQ_0653, RQ_0654, RQ_0655, RQ_0656, RQ_0657,
RQ_0658, RQ_0659, RQ_0660, RQ_0681, RQ_0682, RQ_0683, RQ_0684, RQ_0685, RQ_0705,
RQ_0707, RQ_0708, RQ_0709, RQ_0710, RQ_0711, RQ_0712, RQ_0713, RQ_0714, RQ_0715,
RQ_0716, RQ_0717, RQ_0718, RQ_0719, RQ_0740, RQ_0741, RQ_0742, RQ_0743, RQ_0744,
RQ_0745, RQ_0746, RQ_0747, RQ_0748, RQ_0749, RQ_0750, RQ_0751, RQ_0752, RQ_0753,
RQ_0763, RQ_0764, RQ_0765, RQ_0766, RQ_0767, RQ_0769, RQ_0770, RQ_0771, RQ_0772,
RQ_0773, RQ_0774, RQ_0775, RQ_0776, RQ_0777, RQ_0778, RQ_0794, RQ_0799, RQ_0801,
RQ_0802, RQ_0803, RQ_0804, RQ_0805, RQ_0806, RQ_0807, RQ_0808, RQ_0809, RQ_0810,
RQ_0811, RQ_0812, RQ_0814, RQ_0830, RQ_0831, RQ_0832, RQ_0833, RQ_0834, RQ_0835,
RQ_0836, RQ_0837, RQ_0838, RQ_0851, RQ_0852, RQ_0853, RQ_0854, RQ_0855, RQ_0856,
RQ_0857, RQ_0858, RQ_0859, RQ_0861, RQ_0862, RQ_0863, RQ_0865, RQ_0866, RQ_0870,
RQ_0871, RQ_0875, RQ_0876, RQ_0877, RQ_0878, RQ_0889, RQ_0890, RQ_0891, RQ_0892,
RQ_0893, RQ_0894, RQ_0906, RQ_0961, RQ_0962, RQ_0984, RQ_0985, RQ_0994

T62B006
Receive NoSQL
command

Priority: Must

Who: Storage
Where: Anywhere
When: Anytime
What: Receive a valid NoSQL database command
Why: So that a database operation can be executed

Acceptance Criteria Database command validated

Requirements filled RQ_0015, RQ_0017, RQ_0020, RQ_0022, RQ_0023, RQ_0027, RQ_0030, RQ_0031, RQ_0032,
RQ_0040, RQ_0085, RQ_0117, RQ_0119, RQ_0156, RQ_0157, RQ_0158, RQ_0160, RQ_0184,
RQ_0185, RQ_0192, RQ_0214, RQ_0221, RQ_0249, RQ_0250, RQ_0251, RQ_0252, RQ_0255,
RQ_0285, RQ_0288, RQ_0324, RQ_0381, RQ_0382, RQ_0383, RQ_0384, RQ_0385, RQ_0386,
RQ_0412, RQ_0413, RQ_0414, RQ_0415, RQ_0416, RQ_0417, RQ_0418, RQ_0419, RQ_0420,
RQ_0421, RQ_0422, RQ_0460, RQ_0461, RQ_0462, RQ_0463, RQ_0466, RQ_0467, RQ_0468,
RQ_0515, RQ_0516, RQ_0517, RQ_0518, RQ_0519, RQ_0520, RQ_0521, RQ_0522, RQ_0523,
RQ_0524, RQ_0525, RQ_0575, RQ_0576, RQ_0577, RQ_0578, RQ_0579, RQ_0580, RQ_0581,
RQ_0582, RQ_0583, RQ_0584, RQ_0585, RQ_0623, RQ_0628, RQ_0629, RQ_0630, RQ_0631,
RQ_0632, RQ_0633, RQ_0634, RQ_0635, RQ_0636, RQ_0637, RQ_0646, RQ_0647, RQ_0648,
RQ_0649, RQ_0650, RQ_0651, RQ_0652, RQ_0653, RQ_0654, RQ_0655, RQ_0656, RQ_0657,
RQ_0658, RQ_0659, RQ_0660, RQ_0681, RQ_0682, RQ_0683, RQ_0684, RQ_0685, RQ_0705,
RQ_0707, RQ_0708, RQ_0709, RQ_0710, RQ_0711, RQ_0712, RQ_0713, RQ_0714, RQ_0715,
RQ_0716, RQ_0717, RQ_0718, RQ_0719, RQ_0740, RQ_0741, RQ_0742, RQ_0743, RQ_0744,
RQ_0745, RQ_0746, RQ_0747, RQ_0748, RQ_0749, RQ_0750, RQ_0751, RQ_0752, RQ_0753,
RQ_0763, RQ_0764, RQ_0765, RQ_0766, RQ_0767, RQ_0769, RQ_0770, RQ_0771, RQ_0772,
RQ_0773, RQ_0774, RQ_0775, RQ_0776, RQ_0777, RQ_0778, RQ_0794, RQ_0799, RQ_0801,
RQ_0802, RQ_0803, RQ_0804, RQ_0805, RQ_0806, RQ_0807, RQ_0808, RQ_0809, RQ_0810,
RQ_0811, RQ_0812, RQ_0814, RQ_0830, RQ_0831, RQ_0832, RQ_0833, RQ_0834, RQ_0835,
RQ_0836, RQ_0837, RQ_0838, RQ_0851, RQ_0852, RQ_0853, RQ_0854, RQ_0855, RQ_0856,
RQ_0857, RQ_0858, RQ_0859, RQ_0861, RQ_0862, RQ_0863, RQ_0865, RQ_0866, RQ_0870,
RQ_0871, RQ_0875, RQ_0876, RQ_0877, RQ_0878, RQ_0889, RQ_0890, RQ_0891, RQ_0892,
RQ_0893, RQ_0894, RQ_0906, RQ_0961, RQ_0962, RQ_0984, RQ_0985, RQ_0994

T62B007
Send binary data

Priority: Must

Who: Storage
Where: Anywhere
When: Anytime
What: Perform a file transfer command
Why: So that the user can get the result of his request

Acceptance Criteria File successfully transferred

Requirements filled RQ_0015, RQ_0017, RQ_0020, RQ_0022, RQ_0023, RQ_0027, RQ_0030, RQ_0031, RQ_0032,
RQ_0040, RQ_0085, RQ_0117, RQ_0119, RQ_0156, RQ_0157, RQ_0158, RQ_0160, RQ_0184,
RQ_0185, RQ_0192, RQ_0214, RQ_0221, RQ_0249, RQ_0250, RQ_0251, RQ_0252, RQ_0255,
RQ_0285, RQ_0288, RQ_0324, RQ_0381, RQ_0382, RQ_0383, RQ_0384, RQ_0385, RQ_0386,
RQ_0412, RQ_0413, RQ_0414, RQ_0415, RQ_0416, RQ_0417, RQ_0418, RQ_0419, RQ_0420,
RQ_0421, RQ_0422, RQ_0460, RQ_0461, RQ_0462, RQ_0463, RQ_0466, RQ_0467, RQ_0468,
RQ_0515, RQ_0516, RQ_0517, RQ_0518, RQ_0519, RQ_0520, RQ_0521, RQ_0522, RQ_0523,
RQ_0524, RQ_0525, RQ_0575, RQ_0576, RQ_0577, RQ_0578, RQ_0579, RQ_0580, RQ_0581,
RQ_0582, RQ_0583, RQ_0584, RQ_0585, RQ_0623, RQ_0628, RQ_0629, RQ_0630, RQ_0631,
RQ_0632, RQ_0633, RQ_0634, RQ_0635, RQ_0636, RQ_0637, RQ_0646, RQ_0647, RQ_0648,
RQ_0649, RQ_0650, RQ_0651, RQ_0652, RQ_0653, RQ_0654, RQ_0655, RQ_0656, RQ_0657,
RQ_0658, RQ_0659, RQ_0660, RQ_0681, RQ_0682, RQ_0683, RQ_0684, RQ_0685, RQ_0705,
RQ_0707, RQ_0708, RQ_0709, RQ_0710, RQ_0711, RQ_0712, RQ_0713, RQ_0714, RQ_0715,
RQ_0716, RQ_0717, RQ_0718, RQ_0719, RQ_0740, RQ_0741, RQ_0742, RQ_0743, RQ_0744,
RQ_0745, RQ_0746, RQ_0747, RQ_0748, RQ_0749, RQ_0750, RQ_0751, RQ_0752, RQ_0753,
RQ_0763, RQ_0764, RQ_0765, RQ_0766, RQ_0767, RQ_0769, RQ_0770, RQ_0771, RQ_0772,
RQ_0773, RQ_0774, RQ_0775, RQ_0776, RQ_0777, RQ_0778, RQ_0794, RQ_0799, RQ_0801,

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 121 / 334

RQ_0802, RQ_0803, RQ_0804, RQ_0805, RQ_0806, RQ_0807, RQ_0808, RQ_0809, RQ_0810,
RQ_0811, RQ_0812, RQ_0814, RQ_0830, RQ_0831, RQ_0832, RQ_0833, RQ_0834, RQ_0835,
RQ_0836, RQ_0837, RQ_0838, RQ_0851, RQ_0852, RQ_0853, RQ_0854, RQ_0855, RQ_0856,
RQ_0857, RQ_0858, RQ_0859, RQ_0861, RQ_0862, RQ_0863, RQ_0865, RQ_0866, RQ_0870,
RQ_0871, RQ_0875, RQ_0876, RQ_0877, RQ_0878, RQ_0889, RQ_0890, RQ_0891, RQ_0892,
RQ_0893, RQ_0894, RQ_0906, RQ_0961, RQ_0962, RQ_0984, RQ_0985, RQ_0994

T62B008
Send database
records

Priority: Must

Who: Storage
Where: Anywhere
When: Anytime
What: Perform a database SQL command
Why: So that the user can get the result of his request

Acceptance Criteria SQL successfully executed

Requirements filled RQ_0015, RQ_0017, RQ_0020, RQ_0022, RQ_0023, RQ_0027, RQ_0030, RQ_0031, RQ_0032,
RQ_0040, RQ_0085, RQ_0117, RQ_0119, RQ_0156, RQ_0157, RQ_0158, RQ_0160, RQ_0184,
RQ_0185, RQ_0192, RQ_0214, RQ_0221, RQ_0249, RQ_0250, RQ_0251, RQ_0252, RQ_0255,
RQ_0285, RQ_0288, RQ_0324, RQ_0381, RQ_0382, RQ_0383, RQ_0384, RQ_0385, RQ_0386,
RQ_0412, RQ_0413, RQ_0414, RQ_0415, RQ_0416, RQ_0417, RQ_0418, RQ_0419, RQ_0420,
RQ_0421, RQ_0422, RQ_0460, RQ_0461, RQ_0462, RQ_0463, RQ_0466, RQ_0467, RQ_0468,
RQ_0515, RQ_0516, RQ_0517, RQ_0518, RQ_0519, RQ_0520, RQ_0521, RQ_0522, RQ_0523,
RQ_0524, RQ_0525, RQ_0575, RQ_0576, RQ_0577, RQ_0578, RQ_0579, RQ_0580, RQ_0581,
RQ_0582, RQ_0583, RQ_0584, RQ_0585, RQ_0623, RQ_0628, RQ_0629, RQ_0630, RQ_0631,
RQ_0632, RQ_0633, RQ_0634, RQ_0635, RQ_0636, RQ_0637, RQ_0646, RQ_0647, RQ_0648,
RQ_0649, RQ_0650, RQ_0651, RQ_0652, RQ_0653, RQ_0654, RQ_0655, RQ_0656, RQ_0657,
RQ_0658, RQ_0659, RQ_0660, RQ_0681, RQ_0682, RQ_0683, RQ_0684, RQ_0685, RQ_0705,
RQ_0707, RQ_0708, RQ_0709, RQ_0710, RQ_0711, RQ_0712, RQ_0713, RQ_0714, RQ_0715,
RQ_0716, RQ_0717, RQ_0718, RQ_0719, RQ_0740, RQ_0741, RQ_0742, RQ_0743, RQ_0744,
RQ_0745, RQ_0746, RQ_0747, RQ_0748, RQ_0749, RQ_0750, RQ_0751, RQ_0752, RQ_0753,
RQ_0763, RQ_0764, RQ_0765, RQ_0766, RQ_0767, RQ_0769, RQ_0770, RQ_0771, RQ_0772,
RQ_0773, RQ_0774, RQ_0775, RQ_0776, RQ_0777, RQ_0778, RQ_0794, RQ_0799, RQ_0801,
RQ_0802, RQ_0803, RQ_0804, RQ_0805, RQ_0806, RQ_0807, RQ_0808, RQ_0809, RQ_0810,
RQ_0811, RQ_0812, RQ_0814, RQ_0830, RQ_0831, RQ_0832, RQ_0833, RQ_0834, RQ_0835,
RQ_0836, RQ_0837, RQ_0838, RQ_0851, RQ_0852, RQ_0853, RQ_0854, RQ_0855, RQ_0856,
RQ_0857, RQ_0858, RQ_0859, RQ_0861, RQ_0862, RQ_0863, RQ_0865, RQ_0866, RQ_0870,
RQ_0871, RQ_0875, RQ_0876, RQ_0877, RQ_0878, RQ_0889, RQ_0890, RQ_0891, RQ_0892,
RQ_0893, RQ_0894, RQ_0906, RQ_0961, RQ_0962, RQ_0984, RQ_0985, RQ_0994

T62B009
Send structured
data

Priority: Must

Who: Storage
Where: Anywhere
When: Anytime
What: Perform a NoSQL command
Why: So that the user can get the result of his request

Acceptance Criteria Command successfully executed

Requirements filled RQ_0015, RQ_0017, RQ_0020, RQ_0022, RQ_0023, RQ_0027, RQ_0030, RQ_0031, RQ_0032,
RQ_0040, RQ_0085, RQ_0117, RQ_0119, RQ_0156, RQ_0157, RQ_0158, RQ_0160, RQ_0184,
RQ_0185, RQ_0192, RQ_0214, RQ_0221, RQ_0249, RQ_0250, RQ_0251, RQ_0252, RQ_0255,
RQ_0285, RQ_0288, RQ_0324, RQ_0381, RQ_0382, RQ_0383, RQ_0384, RQ_0385, RQ_0386,
RQ_0412, RQ_0413, RQ_0414, RQ_0415, RQ_0416, RQ_0417, RQ_0418, RQ_0419, RQ_0420,
RQ_0421, RQ_0422, RQ_0460, RQ_0461, RQ_0462, RQ_0463, RQ_0466, RQ_0467, RQ_0468,
RQ_0515, RQ_0516, RQ_0517, RQ_0518, RQ_0519, RQ_0520, RQ_0521, RQ_0522, RQ_0523,
RQ_0524, RQ_0525, RQ_0575, RQ_0576, RQ_0577, RQ_0578, RQ_0579, RQ_0580, RQ_0581,
RQ_0582, RQ_0583, RQ_0584, RQ_0585, RQ_0623, RQ_0628, RQ_0629, RQ_0630, RQ_0631,
RQ_0632, RQ_0633, RQ_0634, RQ_0635, RQ_0636, RQ_0637, RQ_0646, RQ_0647, RQ_0648,
RQ_0649, RQ_0650, RQ_0651, RQ_0652, RQ_0653, RQ_0654, RQ_0655, RQ_0656, RQ_0657,
RQ_0658, RQ_0659, RQ_0660, RQ_0681, RQ_0682, RQ_0683, RQ_0684, RQ_0685, RQ_0705,
RQ_0707, RQ_0708, RQ_0709, RQ_0710, RQ_0711, RQ_0712, RQ_0713, RQ_0714, RQ_0715,
RQ_0716, RQ_0717, RQ_0718, RQ_0719, RQ_0740, RQ_0741, RQ_0742, RQ_0743, RQ_0744,
RQ_0745, RQ_0746, RQ_0747, RQ_0748, RQ_0749, RQ_0750, RQ_0751, RQ_0752, RQ_0753,
RQ_0763, RQ_0764, RQ_0765, RQ_0766, RQ_0767, RQ_0769, RQ_0770, RQ_0771, RQ_0772,
RQ_0773, RQ_0774, RQ_0775, RQ_0776, RQ_0777, RQ_0778, RQ_0794, RQ_0799, RQ_0801,
RQ_0802, RQ_0803, RQ_0804, RQ_0805, RQ_0806, RQ_0807, RQ_0808, RQ_0809, RQ_0810,
RQ_0811, RQ_0812, RQ_0814, RQ_0830, RQ_0831, RQ_0832, RQ_0833, RQ_0834, RQ_0835,
RQ_0836, RQ_0837, RQ_0838, RQ_0851, RQ_0852, RQ_0853, RQ_0854, RQ_0855, RQ_0856,
RQ_0857, RQ_0858, RQ_0859, RQ_0861, RQ_0862, RQ_0863, RQ_0865, RQ_0866, RQ_0870,
RQ_0871, RQ_0875, RQ_0876, RQ_0877, RQ_0878, RQ_0889, RQ_0890, RQ_0891, RQ_0892,
RQ_0893, RQ_0894, RQ_0906, RQ_0961, RQ_0962, RQ_0984, RQ_0985, RQ_0994

T62B010 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 122 / 334

Receive
Management
command

Who: Storage
Where: Anywhere
When: Anytime
What: Receive a valid management command
Why: So that a management operation can be executed

Acceptance Criteria Command validated

Requirements filled N/A

T62B011
Send Management
action

Priority: Must

Who: Storage
Where: Anywhere
When: Anytime
What: Execute a management command
Why: So that the user can get the result of his request

Acceptance Criteria Command successfully executed

Requirements filled N/A

Figure 102: Storage Functions

4.8.3 Workflows

The following sub-sections describe the sequence diagrams of the Storage component.

 Connect to file repository

The following diagram explains this function and the necessary interactions with other
components.

Figure 103: Connect to file repository sequence diagram

 Connect to SQL Database

The following diagram explains this function and the necessary interactions with other
components.

Figure 104: Connect to SQL database sequence diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 123 / 334

 Connect to NoSQL Database

The following diagram explains this function and the necessary interactions with other
components.

Figure 105: Connect to NoSQL database sequence diagram

 Receive file command and send binary data

The following diagram explains this function and the necessary interactions with other
components.

Figure 106: Receive file command and send binary data sequence diagram

 Receive SQL commands and send records

The following diagram explains this function and the necessary interactions with other
components.

Figure 107: Receive SQL command and send structured data sequence diagram

 Receive NoSQL commands and send structured data

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 124 / 334

Figure 108: Receive NoSQL command and send structured data sequence diagram

 Receive management command and execute actions

The following diagram explains this function and the necessary interactions with other
components.

Figure 109: Receive management command and execute action sequence diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 125 / 334

4.9 Human Collaboration (T6.3)

4.9.1 Overall functional characterisation & Context

The Human Collaboration component aims to facilitate the relationship
between human users and manufacturing assets by providing holistic
information and usage description in digital format. The collaboration
environment may also include external developers and users who can
request services and use communication platforms such as audio and
video streaming, forums, workshops, and hackathons. The collaboration aspect is performed
using multiple media channels (eg VoIP, Video Stream) and is also able to request service-
related data for assets and tools being stored as services and visualised on the factory map.

4.9.2 Functions / Features

• Browse Content: the users/developers can browse and download zApps from the
Marketplace, exchange service information, and images

• Streaming: users and developers can participate in audio and video calls. The
stream manager component manages video content from a Video Streaming and
allow user to watch videos and to participate in video conferences

• Collaboration: this functionality uses Collaboration Manager module, connected to
Collaboration API, which allows users to get context information, exchange service
information and forward the images and other data to central storage of the
component which is Data Manager module

• Assets location: due to Location Based Information Manager module, the users can
visualise the factory map and can get the technical data and by having location
information of the assets by connecting the Physical and IoT-related data sources

• Notifications: the users and developers can get and send notifications about assets
and context information due to Notification Manager and Notification API
components, the last one being connected to External Notification Services

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
T63A001
Connect to Marketplace

Priority: Must

Who: Human Collaboration
Where: Anywhere
When: Anytime
What: Connect to Marketplace and open zApps page
Why: So that the assets can be searched and downloaded

Acceptance Criteria Application connected successfully

Requirements filled None

T63A002
Search content

Priority: Must

Who: Human Collaboration
Where: Anywhere
When: Anytime
What: Browse and search for specific zApps from the Marketplace
Why: So that the desired zApp can be found

Acceptance Criteria zApp successfully found

Requirements filled None

T63A003 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 126 / 334

Download content Who: Human Collaboration
Where: Anywhere
When: Anytime
What: Download a specific zApp from the Marketplace
Why: So that the zApp can be stored in Data Manager for further
installation

Acceptance Criteria zApp successfully downloaded

Requirements filled None

T63A004
Send information

Priority: Must

Who: Human Collaboration
Where: Anywhere
When: Anytime
What: Send specific information regarding an asset
Why: So that user can receive the information he requested

Acceptance Criteria Information completed and sent successfully

Requirements filled RQ_0014, RQ_0029, RQ_0108, RQ_0109, RQ_0145, RQ_0148, RQ_0149, RQ_0868

T63A005
Receive information

Priority: Must

Who: Human Collaboration
Where: Anywhere
When: Anytime
What: Receive specific information on request
Why: So that the user can read the information he needed for a
specific asset

Acceptance Criteria Information received successfully

Requirements filled RQ_0014, RQ_0029, RQ_0108, RQ_0109, RQ_0145, RQ_0148, RQ_0149, RQ_0868

T63A006
Upload images

Priority: Must

Who: Human Collaboration
Where: Anywhere
When: Anytime
What: Upload specific image regarding an asset
Why: So that user can receive the information he requested

Acceptance Criteria Image uploaded successfully

Requirements filled None

T63A007
Download images

Priority: Must

Who: Human Collaboration
Where: Anywhere
When: Anytime
What: Download specific image
Why: So that the user can have the asset image needed

Acceptance Criteria Image downloaded successfully displayed

Requirements filled None

T63A008
Upload video

Priority: Must

Who: Human Collaboration
Where: Anywhere
When: Anytime
What: Store a video using Stream Manager and open a link for users
Why: So that the users can access and watch video

Acceptance Criteria Video successfully uploaded

Requirements filled None

T63A009
Join video conference

Priority: Must

Who: Human Collaboration
Where: Anywhere
When: Anytime
What: Create/join video conference
Why: So that the user can participate in video calls

Acceptance Criteria Video conference successfully created

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 127 / 334

Requirements filled None

T63A010
Get location

Priority: Must

Who: Human Collaboration
Where: Anywhere
When: Anytime
What: Connect to asset and get its location
Why: So that the user can visualise asset in the factory map

Acceptance Criteria Asset successfully located

Requirements filled None

4.9.3 Workflows

The following sub-sections describe the sequence diagrams of the Human Collaboration
component.

 Connect to Marketplace

Figure 110 Connect to Marketplace sequence diagram

 Search and download content

Figure 3 Search and download content sequence diagram

 Send and receive information

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 128 / 334

Figure 4 Send and receive information sequence diagram

 Upload and download images

Figure 4 Upload and download images sequence diagram

 Upload video

Figure 4 Upload video sequence diagram

 Join video conference

Figure 4 Join video conference sequence diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 129 / 334

 Get location

Figure 4 Get location sequence diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 130 / 334

4.10 Portal (T6.4)

4.10.1 Overall functional characterisation & Context

This is the front facing interface to the platform. From here user can login
to the platform see available applications (depending on their access).
This portal allows access to the zApps UIs and creates a standard point
for addressing the system.

This component is on the Enterprise tier and is part of “user frontend
plane”. It needs to allow people access to various parts of the platform
including the T6.2 the Marketplace to buy and install zApps as well as
connecting to running applications within the T6.4 Application Run-time.

4.10.2 Functions / Features

The main function of this is to function as the front facing portal to the project. Including
users, zApps, setup and configuration, and links to the marketplace.

Subtask Subtask description
T64D01
Manage users

Priority: Must

Who: Users
What: To login and manage their page and anything they have permission to
Why: For the functioning of the platform and the centralisation of administrative
functions
When: A user or administrator access requires it
Where: On the platform

Acceptance Criteria A user can login and see their profile

Requirements filled RQ_0423, RQ_0442, RQ_0443, RQ_0444, RQ_0469, RQ_0486, RQ_0487, RQ_0488, RQ_0526,
RQ_0546, RQ_0547, RQ_0548, RQ_0586, RQ_0605, RQ_0606, RQ_0607, RQ_0615, RQ_0616,
RQ_0619, RQ_0620, RQ_0621, RQ_0668, RQ_0669, RQ_0672, RQ_0673, RQ_0674, RQ_0676,
RQ_0727, RQ_0728, RQ_0731, RQ_0732, RQ_0733, RQ_0786, RQ_0787, RQ_0790, RQ_0791,
RQ_0792, RQ_0794, RQ_0843, RQ_0844, RQ_0845, RQ_0847, RQ_0848, RQ_0849, RQ_0868,
RQ_0869, RQ_0899, RQ_0900, RQ_0901, RQ_0903, RQ_0904, RQ_0905, RQ_0924, RQ_0980,
RQ_0981, RQ_0982, RQ_0983

T64D02
Show appropriate
content for a user’s
role

Who: Users
What: To show appropriate content based on their role. So, a developer receives
different content compared to factory worker or to a factory manager
Why: To distinguish the user roles and customise content effectively
When: A user logs in to the portal
Where: On the platform

Acceptance Criteria Different user types can login and receive only appropriate

Requirements filled N/A

T64D03
Getting a zApp UI and
content

Who: User
What: Requests access to a zApp UI
Why: To centralise access to zApp UIs
When: A user requests access to zApp UI, during runtime
Where: On the platform

Acceptance Criteria A user can access zApps from the portal

Requirements filled N/A

T64D04
Managing zApps

Who: Administrator
What: Can manage (request install or uninstall) of zApps.
Why: To allow centralised access to zApp management
When: At the request of the administrator
Where: On the platform

Acceptance Criteria An admin can manage zApps from the portal

Requirements filled N/A

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 131 / 334

T64D05
Getting marketplace
content

Who: User
What: A user wishes to buy a zApp for this platform can get access to the
marketplace features
Why: To act a central interface for this instance of ZDMP
When: When a user requests it
Where: On the platform but to the central marketplace

Acceptance Criteria A user can purchase a zApp for this platform

Requirements filled N/A

Figure 111: Portal Features

4.10.3 Workflows

 Show appropriate content for a user’s role

As the front facing component to ZDMP it needs to respond differently for different users. It
does this by utilising:

• User initiated requests

• Portal passes requests through the backend to the role’s manager

• A connection to T5.2 Secure Authentication/Authorisation component gets the
authentication of the user

The following figure shows the workflow to show appropriate content for any user.

Figure 112: Workflow to get content for a user

 Getting zApp UIs and content

The frontend portal also provides a central place to inspect the zApps. To access the UI
from these zApps the portal redirects requests from the user to the ZDMP Asset UI API
which will then get the UI content from the zApp. The following figure shows the workflow
to get a zApp UI for a user.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 132 / 334

Figure 113: Workflow to get a zApp UI for a user

 Get Marketplace Content

This will allow a user to access marketplace functionality from the portal (given appropriate
permissions). The following figure shows the workflow to get marketplace content for a
user.

Figure 114: Workflow to get marketplace content for a user

4.10.4 Additional Issues

Additional issues have appeared after the description of the architecture.

Issue Description Next Steps Lead
(Rationale)

Language
requirements

Many use-cases have asked for multilanguage
support. This was noted to be not the aim of the
project. RQ_0162, RQ_0204, RQ_0220, RQ_0388,

RQ_0446, RQ_0490, RQ_0550, RQ_0609, RQ_0663,
RQ_0721, RQ_0781, RQ_0896, RQ_0954, RQ_0974,
RQ_0840

Make sure our UI
is prepared for
internalisation but
without
translation.

T6.4 Portal

User roles Many requirements relate to user roles. For
central platform management this will be the
interface. However every zApp will be able to
access appropriate user permissions from T5.2
Secure Authentication and Authorisation
RQ_0423, RQ_0442, RQ_0443, RQ_0444, RQ_0469,
RQ_0486, RQ_0487, RQ_0488, RQ_0526, RQ_0546,
RQ_0547, RQ_0548, RQ_0586, RQ_0605, RQ_0606,
RQ_0607, RQ_0615, RQ_0616, RQ_0619, RQ_0620,

T5.2 Secure
Authentication
and Authorisation
will be
reasonable for
users and roles
the portal will
support with a

T5.2 Secure
Authentication
and
Authorisation

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 133 / 334

RQ_0621, RQ_0668, RQ_0669, RQ_0672, RQ_0673,
RQ_0674, RQ_0676, RQ_0727, RQ_0728, RQ_0731,
RQ_0732, RQ_0733, RQ_0786, RQ_0787, RQ_0790,
RQ_0791, RQ_0792, RQ_0794, RQ_0843, RQ_0844,
RQ_0845, RQ_0847, RQ_0848, RQ_0849, RQ_0868,
RQ_0869, RQ_0899, RQ_0900, RQ_0901, RQ_0903,
RQ_0904, RQ_0905, RQ_0924, RQ_0980, RQ_0981,
RQ_0982, RQ_0983

frontend
interface.

Figure 115: Additional Issues Portal

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 134 / 334

4.11 Application Run-time (T6.4)

4.11.1 Overall functional characterisation & Context

Application Run-time represents the running environment for zApps,
components, and ZDMP Assets in general. It utilizes zApps, ZDMP
Assets and core components as containerized applications with a
RESTFUL interface.

Unlike many other components there is only one Application Run-time per platform
instance. This component is part of the Enterprise tier, and is “communication, storage or
management related infrastructure”. This component can be run either in the Cloud or
servers in the factory (FOG).

4.11.2 Functions / Features

Functional this component allows for installing of a component, running of components,
and allowing components to interact with each other:

• Getting an application from the Marketplace or the Developer Tier: Applications
will be built in the design tier and uploaded to the marketplace or directly to the T6.4
Application run-time. Though the T5.2 Secure Installation component will be used to
check that the Applications can be installed

• Deploying/Installing an application: Once an application has been purchased from
the Marketplace or been uploaded from the Developer Tier then the application
needs placing on the portal. Here it will be placed in a service registry

• Running an application: Applications are then deployed as per instructions in their
manifest file. This will allow them to be deployed locally to the platform or at the
“edge” (by using T5.5 Distributed Computing)

• Running multiple applications: The platform supports running multiple applications
as services therefore the applications are deployed to allow for multiple instances of
the applications and to be connected using the T6.4 Service and Message Bus

Subtask Subtask description

T64C01
install a new component
or zApp

Priority: Must

Who: Manufacturing and Logistics User - IT Manager
What: Install a new component or zApp on any available host,
including all dependencies, in the correct location
Why: To add new functionality for users to the platform
When: A user requests it
Where: On the platform

Acceptance Criteria Successfully install a zApp from the marketplace, or a Developer
Tier component

Requirements filled RQ_0259, RQ_0332, RQ_0351, RQ_0362, RQ_0371, RQ_0380, RQ_0296,
RQ_0300, RQ_0341, RQ_0392, RQ_0394, RQ_0450, RQ_0452, RQ_0554,
RQ_0556, RQ_0614, RQ_0231, RQ_0495

T64C02 Priority: Should

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 135 / 334

manage installed
components and zApps

Who: Manufacturing and Logistics User - IT Manager
What: Use basic management functions for installed components
and zApps: view the list of installed components and zApps,
update the settings of a component or zApp, or remove installed
components or zApps
Why: To be able to maintain the functionalities provided by the
platform to users
When: A user requests it
Where: On the platform

Acceptance Criteria After changes have been confirmed, they are immediately
considered. Dependencies of components / zApps need to be
removed explicitly and separately

Requirements filled RQ_0058, RQ_0111

T64C03
manage component or
zApp settings

Priority: Must

Who: Manufacturing and Logistics User - IT Manager
What: View and edit the settings for a component or zApp,
including its access to other components and zApps, as well as its
runtime state (activated/deactivated, start/stop)
Why: To alter the configuration of a certain component or zApp
and to enable or disable its usage
When: A user requests it
Where: On the platform

Acceptance Criteria After changes in the settings have been confirmed, they are
immediately enacted.

Requirements filled N/A

T64C05
Networking a zApp

Priority: Must

Who: Service Registry and Distributed Computing
What: connect endpoints and location to host zApp
Why: so that a zApp has connectivity to the rest of the platform
When: a zApp is installed
Where: On the platform

Acceptance Criteria A zApp can be networked in with the platform

Requirements filled RQ_0023, RQ_0167, RQ_0168

T64C06
Instantiating a zApp

Priority: Must

Who: Container Orchestrator, zApp, user
What: Starts a zApp on a host
Why: So, the zApp service can be up and running
When: A user, zApp, or orchestrator requests it
Where: On the platform

Acceptance Criteria A zApp running on a host
Requirements filled N/A

Figure 116: Application Runtime Features

4.11.3 Workflows

This component works to install any components or service associated with ZDMP or
zApps (in the most general term)

 Installing a zApp

Once an zApp has been purchased from the Marketplace it will be installed onto the
platform using T5.2 Secure Installation component. Figure 117 shows this workflow. The
workflow consists of the following steps:

• Receive request to install a zApp

• Read manifest file and

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 136 / 334

• Add docker file to registry

Figure 117: The workflow diagram describing how to install a zApp

 Networking a zApp

The zApps endpoints and host need to be assigned. The endpoints are stored in the
manifest file and the host will be defined by the T5.5 Distributed Computing component.
This workflow is shown in Figure 118.

Figure 118: Workflow diagram describing how to network a zApp

 Instantiating a zApp

The container orchestration module will start (instantiate) a zApp. This deploy the Docker
Image as a container, as shown in Figure 119.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 137 / 334

Figure 119: The workflow diagram explaining how to instantiate a zApp

4.11.4 Additional Issues

Additional issues have appeared after the description of the architecture.

Issue Description Next Steps Lead
(Rationale)

General
Requirement of
the Platform

This component represents a core component
of ZDMP and can be used by a wide range of
zApps, and other components and is required
for a working project.

Clarification of
the general
usage of ZDMP

T6.4 Application
Run-time

Requirements -
Performance

The following requirements mention the
performance of the platform. This will be
considered by this component and is related to
all the functionality of the running platform.
RQ_0349, RQ_0018, RQ_0019, RQ_0025, RQ_0036,
RQ_0082, RQ_0090, RQ_0104, RQ_0110, RQ_0132,
RQ_0144, RQ_0150, RQ_0257, RQ_0278, RQ_0279,
RQ_0339, RQ_0360, RQ_0369, RQ_0378, RQ_0386,
RQ_0451, RQ_0555

Develop this
component to
help with these
requirements

T6.4 Application
Run-time

Requirements
– Location of
Platform

The following requirements mention the location
of the platform. This will be considered by this
component but cannot be related to the
functionality. RQ_0002, RQ_0016, RQ_0059, RQ_0060,

RQ_0092, RQ_0112, RQ_0134, RQ_0666, RQ_0726,
RQ_0785

Develop this
component to
help with these
requirements

T6.4 Application
Run-time

Platform
Installation

RQ_0227 represents a requirement on the
installation of this component. (Requiring
Windows 7 and 10)

Make sure this
component
satisfies this

T6.4 Application
Run-time

Figure 120: Additional Issues Application Runtime

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 138 / 334

4.12 Inter-platform Interoperability (T6.5)

This task addresses the interconnectivity of the ZDMP platform with
other 3rd party platforms and with other instances of ZDMP. It connects
three main themes, security, data, and marketplaces to allow the secure
transfer of information and services to other platforms. The following
platforms are considered as candidate platform for integration:

• eFactory: A federated smart factory ecosystem and a digital
platform that interlink different stakeholders of the digital
manufacturing domain

• ADAMOS: Open, manufacturer-independent IIoT platform run by SAG, designed by
a joint-venture of leading engineering and technology companies. The module will
work as backend module based on APIs.

• SDAIM: The system was originally developed as a surveillance, detection and alerts
information management system designed for geo-distributed and federated near-
real-time monitoring and decision support. Nevertheless, as the SDAIM design is
based on a multi-level data and information fusion model, it is a generic Streaming
Data Analytics and Information Management platform

• Other – Other platforms that may be considered

4.12.1 Overall Functional Characterisation & Context

This component acts functionally as an interconnector between an instance of the ZDMP
platform and other platforms. It first establishes and allows for secure connections with the
external platform then proceeds to share information and services with the other platform.
It shares data from the T6.4 Service and Message Bus and shares services from the T6.2
Marketplace.

This components functionality is in the Enterprise Tier of the platform (see D4.3a Global
Architecture and Specification). It connects to other applications, directly or in the Cloud. It
needs secure access to the data and zApps available in the platform and provides
communication, storage, or management related infrastructure.

4.12.2 Functions / Features

The Inter-platform Interoperability Component is split into several major sub-components
which offer the following major functionalities:

• Interoperability UI: This is a user interface to manage connections with other
platforms and giving the appropriate permissions needed for a connection, as
managed by the security API and Security Standardisation

• Interoperability Centre: This controls the whole component and directs flow of
information and services as designated by the user

• Security Standardisation: This feature enables the T5.2 Secure
Authentication/Authorisation component to check permissions of users and make
sure connections are valid across different role and access models used by the
interconnected external platforms

• Security API and Security Standardisation: This takes links with the T5.2 Secure
Authentication/Authorisation component to check permissions of users and make
sure connections are valid

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 139 / 334

• Marketplace Standardisation: This feature allows the integration of external
marketplaces into the ZDMP platform and enables external platforms to access the
ZDMP Marketplace to give and receive links to available services

• Marketplace API and Marketplace Standardisation: This links with the T6.2
Marketplace component to give and receive links to available services

• Data Standardisation: This feature enables ZDMP Assets to call services and use
data sources provided by external platforms and vice versa. Data API and Data
Standardisation: This connects with the T6.4 Service and Message Bus to allow data
connectivity and, possibly, the ability to call remote applications or for remote
platform to call local zApps

• Harmonisation API: This is an additional API to aide in the standardisation of data
or Marketplace zApps

• ADAMOS Service Plugin: This plugin creates a connection with an instance of
ADAMOS IIoT and can send data, security, and device information to this platform.
Also acts as a good example for software platforms at manufacturer side. Thus,
similar functionalities can be provided for other existing software platforms as well

• eFactory Service Plugin: This plugin creates a connection with the eFactory data
spine. Allowing further connections to other eFactory connected platforms or other
the eFactory platform itself

• SDAIM Service Plugin: This plugin creates and manages connections to the SDAIM
platform, including data, security, and services

These high-level functions can be grouped to the following features which have to be
realised:

Subtask Subtask description

T65A001

Interconnection of
ZDMP with external
platforms

Priority: Must

Who: ZDMP Platform Administrator
Where: Anywhere

When: Runtime, whenever interconnectivity to an external platform is needed
What: Bi-directional access to service APIs and data sources
Why: To enable ZDMP Assets to use the services and data provided by
external platforms and vice versa

Acceptance Criteria External platforms can be interconnected with ZDMP through External
Platform Plugins. These plugins allow ZDMP Assets to use services and data
provided by the interconnected platform and vice versa. Supported external
platforms include ADAMOS, eFactory and SDAIM.

Requirements filled RQ_0008, RQ_0009, RQ_0010, RQ_0011, RQ_0012, RQ_0167

T65B001

ZDMP and eFactory
Marketplace Integration

Priority: Must

Who: ZDMP Platform Administrator
Where: Anywhere

When: Runtime
What: Integration for the Marketplaces of ZDMP and eFactory
Why: To allow requests to each Marketplace for buying and selling of zApps
and other 3rd party apps across the system

Acceptance Criteria The eFactory and ZDMP Marketplaces can be accessed from either platform
and allow buying and selling of zApps as well as other 3rd party apps across
the system

Requirements filled N/A

T65C001

Exchange of device- and
sub-device Information

Priority: Must

Who: Application Builder, Secure Business Cloud
Where: Anywhere

When: Runtime, whenever exchange of device- and sub-device information
needed

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 140 / 334

What: Device and sub-device information
Why: To export devices and sub-devices to the ADAMOS platform

Acceptance Criteria The T6.5 ADAMOS service plugin provides the functionality to export the
devices and sub-devices per end-user/owner to the ADAMOS platform on
request. This includes a full description of the device including technical
information, a unique id of the device and a unique id of the end-user/owner

Requirements filled RQ_0008, RQ_0009, RQ_0010, RQ_0011, RQ_0012, RQ_0167

T65C002
Exchange of supported
operations per device

Priority: Must

Who: T6.5 ADAMOS service plugin

Where: Anywhere

When: Runtime, whenever exchange of supported operations of a device
needed
What: Information of supported operations of a device

Why: To make the list of supported operations of a device available to the
ADAMOS platform

Acceptance Criteria The T6.5 ADAMOS service plugin provides the functionality to export the list of
supported operations per device to the ADAMOS platform on request. This
includes a description of the operations and a unique id of the operation type

Requirements filled RQ_0008, RQ_0009, RQ_0010, RQ_0011, RQ_0012, RQ_0167

T65C003
Exchange of historical
data of devices

Priority: Must

Who: T6.5 ADAMOS service plugin

Where: Anywhere

When: Runtime, whenever historical data needs to be exported to another
platform
What: Historical data of a device

Why: To make historical data for a certain period available to the ADAMOS
platform

Acceptance Criteria The T6.5 ADAMOS service plugin provides the functionality to export historical
data of a device for a certain time period, eg 3 months, including a unique id of
the device, a unique id of the device type, and a unique id of the end-
user/owner

Requirements filled RQ_0008, RQ_0009, RQ_0010, RQ_0011, RQ_0012, RQ_0167

T65C004
Exchange of end
user/owner information

Priority: Should

Who: T6.5 ADAMOS service plugin

Where: Anywhere

When: Runtime, whenever information of user and groups needs to be exported
to another platform
What: Information of users and groups

Why: To make user and groups available to the ADAMOS platform

Acceptance Criteria The T6.5 ADAMOS service plugin provides the functionality to export data of
users and groups including a description of the user/group and a unique id of
the user/group and the permission (read-only, write) of the user/group

Requirements filled RQ_0008, RQ_0009, RQ_0010, RQ_0011, RQ_0012, RQ_0167

Figure 121: Inter-Platform Interoperability Features

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 141 / 334

4.12.3 Workflows

 Connect to an external platform

This feature enables the ZDMP platform to connect to external platforms. Connection
means the exchange of pieces of information in both directions. This includes the export of
information from the ZDMP platform as well as the import of information from other
platforms. Depending on the use and the capabilities of the platform it may be the case
that information exchange in only one direction is supported, eg the ZDMP platform may
export data to another platform without importing data from that platform. The workflow is
an example and is similar for all supported platforms.

Figure 122: Interoperability to different external platforms

 Marketplace Integration

This feature enables the harmonisation of security information between the platforms. This
allows for secure communication and access between the platforms, including roles,
organisations, and data owners.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 142 / 334

Figure 123: Marketplace Integration Sequence Diagram

4.12.4 Additional Issues

Additional issues have appeared after the description of the architecture.

Issue Description Next Steps Lead
(Rationale)

Intercompany
connectivity

These requirements are addressed by the
functionality of this component as a whole.
RQ_0033, RQ_0066

Allow for
intercompany
connections of
ZDMP platform

T6.5 Inter-
platform
Interoperability

Connectivity to
legacy system

These requirements relate to a connection to a
“legacy system”. More needs to be known as to
whether this is included in T5.1 Data Acquisition
or under T6.5 Inter-platform Interoperability.
RQ_0622, RQ_0675, RQ_0734, RQ_0793,
RQ_0879, RQ_0884, RQ_0975

Decide which
component is
responsible for
this legacy
system

T5.1 Data
Acquisition and
T6.5 Inter-
platform
Interoperability.

Figure 124: Interplatform Interoperability Additional Issues

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 143 / 334

5 Platform Tier: Run-time

The Platform Tier groups the main functionality of ZDMP as run-time components. These
components are running within the T6.4 Application Run-time component. It includes
elements that have been designed either separately or zApps created by the T6.1
Application Builder. It also includes utilities that are used by these zApps, such as the T6.4
Message Bus and T5.3 Data Harmonisation.

Figure 125: Platform-Tier Components

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 144 / 334

5.1 Data Harmonisation Run-time (T5.3)

5.1.1 Overall functional characterisation & Context

The Data Harmonisation Run-time component integrates data from
existing software systems by executing the Manufacturing Maps created
by the Data Harmonisation Designer component, ie transforming data
from its source format to its destination format during the run-time. The
maps created in the Data Harmonisation Designer component are
deployed and encapsulated as services to be finally exposed as
software mini-packages, ie Docker containers. These mini-packages, containing the
transformation routines, are uploaded, and published in the ZDMP Marketplace to
advertise and commercialise them.

5.1.2 Functions / Features

The Data Harmonisation and Interoperability component provides a set of functionalities
that can be grouped on the following features:

• Transform: Manufacturing Maps can be executed in the form of a standalone
service. This service contains the rules defined and deployed from the Manufacturing
Map to transform a specific syntax format A into format B which could then, for
example, be used as part of a process

• Submit Usage Data: Usage data will be captured and communicated to the Platform

Their function can be grouped to the following features:

Subtask Subtask description
T53B001
Get invocation

Priority: Must

Who: Data Harmonisation
Where: Anywhere
When: Runtime
What: Get invocation request from Service Call
Why: So that the transformation engine can execute the right transformation
service

Acceptance Criteria The invocation is relayed to the transformation engine

Requirements Filled RQ_0886

T53B002
Connect to Store

Priority: Must

Who: Data Harmonisation
Where: Anywhere
When: Runtime
What: Connect to ZDMP Store with the credentials as directed by the T5.2
Secure Authentication/Authorisation component
Why: So that the transformed data can be stored

Acceptance Criteria The ZDMP Store is accessible

Requirements Filled RQ_0759, RQ_0761, RQ_0880, RQ_0881, RQ_0885, RQ_0886, RQ_0921, RQ_0923

T53B003
Unpack Routines

Priority: Must

Who: Data Harmonisation
Where: Anywhere
When: Runtime
What: Unpack a mapping routine set
Why: So that the Transformation engine can read the transformation steps
determined in the Map
When/Where: Design-time in the Data Harmonisation Designer

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 145 / 334

Acceptance Criteria
The routines are successfully unpacked, and the transformation steps are
available for the transformation engine

Requirements Filled RQ_0135

T53B004
Read Data

Priority: Must

Who: Data Harmonisation
Where: Anywhere
When: Runtime (after T53B001)
What: Reads source data as input parameter from the invocation
Why: So that the input data can be transformed by executing the transformation
services

Acceptance Criteria The input data is available for transformation

Requirements Filled RQ_0768, RQ_0775, RQ_0825, RQ_0880, RQ_0881, RQ_0885, RQ_0921, RQ_0923

T53B005
Transform

Priority: Must

Who: Data Harmonisation
Where: Anywhere
When: Runtime
What: Transforms the data
Why: So that the routines of the mapping are executed

Acceptance Criteria The transformation is successfully executed

Requirements Filled N/A

T53B006
Push Transformed Data

Priority: Must

Who: Data Harmonisation
Where: Anywhere
When: Runtime (after T35B005)
What: Pushes transformed data back to the calling zApp

Why: So that the routines of the mapping are executed

Acceptance Criteria The transformation is successfully executed

Requirements Filled RQ_0085, RQ_0697, RQ_699, RQ_0703, RQ_0805, RQ_0806, RQ_0807, RQ_0827

T53B007
Store Transformed
Data

Priority: Should

Who: Data Harmonisation
Where: Anywhere
When: Runtime (after T35B005)
What: Store the transformed data
Why: So that the transformed data is accessible without having to re-execute the
transformation service again

Acceptance Criteria The transformed data is successfully stored

Requirements Filled RQ_0032, RQ_0085, RQ_0119, RQ_0637, RQ_0705, RQ_0753

T53B008
Submit Usage Data

Priority: Should

Who: Data Harmonisation
Where: Anywhere
When: Runtime
What: Submit usage data
Why: So that the platform can make use of this data for monitoring purposes

Acceptance Criteria The usage data is successfully received by the Platform

Requirements Filled RQ_0032, RQ_0033, RQ_067, RQ_0085, RQ_0145, RQ_0637

Figure 126: Data Harmonization Run-time Features

5.1.3 Workflows

As the Data Harmonisation Run-time component is a service-based component, there are
no UIs attached to it. Therefore, this sub-section only describes its sequence diagrams.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 146 / 334

 Transform

This feature deals with the preparation steps prior to executing a transformation service
and the steps to execute a map. Figure 127 shows the sequence diagram of the transform
feature.

The main steps/functionalities are as follows:

• Preparations:

• Get Invocation (see function T53B001)

• Connect to T6.2 ZDMP Marketplace (see function T53B002)

• Execute Map:

• Unpack Routines (see function T53B003)

• Read Data (see function T53B004)

• Transform (see function T53B005)

• Push Transformed Data (see function T53B006)

• Store Transformed Data (see function T53B007)

Figure 127: Transform Sequence Diagram

 Submit Usage Data

This feature provides the capability to deploy and publish a map after it has been
generated by the Business Analyst. Figure 128 shows the sequence diagram.

There is only one step corresponding to this feature:

• Submit Usage Data

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 147 / 334

Figure 128: Submit Usage Data Sequence Diagram

5.1.4 Additional Issues

Additional issues have appeared after the description of the architecture.

Issue Description Next Steps Lead
(Rationale)

Performance
Issues

The following requirements with a “must“-priority
were targeted at the task 5.3, but there are
concerns about performance:
RQ_0036, RQ_0082, RQ_0090, RQ_0110,
RQ_0118, RQ_0132, RQ_0136, RQ_0150

Discuss with
requirement
providers who to
solve the issue

T5.3 Data
Harmonisation

Subtasks
without
specified
fulfilled
requirements

The following subtasks do not fulfil specific
requirements, but are there to fulfil a more
general purpose:
T53B005

Ensure that all
the tasks have
requirements

T5.3 Data
Harmonisation

Figure 129: Additional Issues Data Harmonization Run-time

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 148 / 334

5.2 Orchestration Run-time (T5.4)

The interaction between Orchestration Designer and other components
of the ZDMP platform (Orchestration Runtime, Monitoring and Alerting,
Process Engine, Marketplace, Storage, etc) will be facilitated using the
T6.4 Service and Message Bus. The Monitoring and Alerting provides
alerts based on a set of incoming data and rules.

5.2.1 Overall functional characterisation & Context

For BPMN process execution the Camunda Process Engine is used,
due to its open source design and flexibility. The Process API acts as the bridge between
the Orchestration Designer and the other components like the Process Engine,
Marketplace, etc.

5.2.2 Functions / Features

The Process API component is composed of the following modules:

• BPMN Parser: This module is responsible for parsing BPMN files to ensure their
validity. It is also used when importing a new process from an external file

• Process Execution Manager: This module bridges the Orchestration Designer and
the Camunda Process Engine, managing the deployment of process models

• Process Instance Controller: This module interacts with the Camunda Process
Engine, and handles running process instances, eg starting/stopping and getting
metrics to message bus topics so other components can get information about
process instances

• Service Manager: The Service Manager module is responsible for the organisation
of services that are needed for the execution of the process, returning to the BPMS
information such as service execution URI, parameters, or availability. This module
reserves all needed services at the beginning of the execution. The instantiated
service is called from the BPMS module when a new service is used

The functions can be grouped to the following features which have to be realised:

Subtask Subtask description

T54B001
Deploy to Camunda
Engine

Priority: Must

Who: Developer
What: Connect to Process Execution Manager
Why: Prepare deployment for process model
When: During installation of a process
Where: On the platform

Acceptance Criteria The process is available to start on the platform

Requirements filled See additional issues table (Section 5.2.4) below

T54B002
New Process Instance

Priority: Must

Who: Process API
What: Prepare process model for execution
Why: So that process can be executed
When: During installation of a process
Where: On the platform

Acceptance Criteria Allocate resources for new process instance, notify process engine about a new
instance to be created

Requirements filled See additional issues table (Section 5.2.4) below

T54B003 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 149 / 334

Request Services Who: Process API
What: Connect to the Service Manager
Why: Get metadata information for each service used in the process model for
further execution
When: During installation of a process
Where: On the platform

Acceptance Criteria Service Manager returns all metadata information

Requirements filled See additional issues table (Section 5.2.4) below

T54B004

Launch and start
process (and get
metrics)

Priority: Must

Who: User
What: Launches the process and start getting metrics
Why: A new instance is created, and metrics start being collected
When: On user command

Where: On the platform

Acceptance Criteria Metrics about the instance are being collected

Requirements filled See additional issues table (Section 5.2.4) below

T54B005
Manage process
instances runtime
values

Priority: Must

Who: Process API
What: Manage process instances and get/set process instance variable
values

Why: So, run-time values can be read and write
When: During process run-time

Where: On the platform

Acceptance Criteria Information about each process instance can be retrieved, and process instance
variable values can be read/write

Requirements filled See additional issues table (Section 5.2.4) below

T54B006
Manage process
instances runtime
values

Priority: Must

Who: Process API
What: Compile external service metadata so they can be called as part of the
process execution

Why: So that a process is effectively helped by the execution of 3rd party
services
When: During process run-time

Where: On the platform

Acceptance Criteria Process instance interacts with external services

Requirements filled See additional issues table (Section 5.2.4) below

T54B007
Start process instance

Priority: Must

Who: Orchestration Designer
What: Start a new instance from an existing process model
Why: Manually trigger instance start from process engine
When: During process run-time

Where: On the platform

Acceptance Criteria A new instance of an existing process model is running in the Process Runtime

Requirements Fields See additional issues table (Section 5.2.4) below

T5BA008
Stop/Suspend/Resume
process instance

Priority: Must

Who: Orchestration Designer
What: Stop/Suspend/Resume process instances

Why: User can interact with process instances

When: Due to API call

Where: In the platform

Acceptance Criteria The running process instance is stopped, suspended, or resumed

Requirements filled See additional issues table (Section 5.2.4) below

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 150 / 334

Figure 130: Orchestration Run-Time Features

5.2.3 Workflows

This section is highlighting the user interaction and the interaction of the component in the
single function.

 Process deployment and instance creation sequence

This deploys a process from the Designer to the Process Instance Controller.

Figure 131: Process deployment and instance creation

 Process runtime execution and service provisioning

This executes the process and connects it to the Camunda process engine.

Figure 132: Process deployment and instance creation

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 151 / 334

5.2.4 Additional Issues

Additional issues have appeared after the description of the architecture.

Issue Description Next Steps Lead
(Rationale)

General
component

These functions do not match any requirements
as this component has very general functionality
that could be used in many of the zApps. This is
discussed more below

See Below T5.4
Orchestration
Runtime

Customisation
level of zApps

This component can be used to create a
business process flow which could be
customised by technical users. This could be
useful in the following requirements:
RQ_0258, RQ_0331, RQ_0340, RQ_0370

Discuss with
zApp developers
on the usefulness
of the
orchestration
services

T5.4
Orchestration
Runtime

Performance The following requirements relate to the
performance. In some cases, the Process
Orchestration may slow these down as its built
to run on human timescales and longer running
processes rather than for highly optimised real-
time systems:
RQ_0349, RQ_0036, RQ_0110, RQ_0014, RQ_0018,
RQ_0019, RQ_0025, RQ_0104, RQ_0118, RQ_0132,
RQ_0144, RQ_0150, RQ_0278, RQ_0279, RQ_0339,
RQ_0360, RQ_0369, RQ_0378, RQ_0386, RQ_0451,
RQ_0555, RQ_0090

Discuss with
zApp developers
on the usefulness
of the
orchestration
services

T5.4
Orchestration
Runtime

Linking
components,
zApps and
other services.

The whole functionality of T5.4 Orchestration
Designer and Runtime is to link processes and
services together. The following could utilise this
functionality:
RQ_0020, RQ_0047, RQ_0054, RQ_0072, RQ_0074,
RQ_0076, RQ_0078, RQ_0080, RQ_0081, RQ_0098,
RQ_0101, RQ_0105, RQ_0106, RQ_0107, RQ_0128,
RQ_0129, RQ_0130, RQ_0140, RQ_0141, RQ_0145,
RQ_0147, RQ_0151, RQ_0263, RQ_0271, RQ_0274,
RQ_0306, RQ_0308, RQ_0309, RQ_0322, RQ_0325,
RQ_0326, RQ_0327, RQ_0335, RQ_0338, RQ_0343,
RQ_0696, RQ_0700, RQ_0759, RQ_0761, RQ_0818,
RQ_0920, RQ_0925, RQ_0932, RQ_0933, RQ_0934,
RQ_0935, RQ_0037

Discuss with
zApp developers
on the usefulness
of the
orchestration
services

T5.4
Orchestration
Runtime

Figure 133: Orchestration Runtime Additional Issues

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 152 / 334

5.3 Monitoring and Alerting (T5.4)

5.3.1 Overall functional characterization & Context

The Monitoring and Alerting component is composed of an API and a
HTML / CSS / JS based web frontend where the users can see
snapshots of the incoming data from the Services and Message Bus
(T6.4) and the Orchestration Run-Time (T5.4). A name for a KPI can be
defined as well as the topics and filtering expression needed to obtain
the KPI from the message bus. Based on the KPIs defined rules can be created. A rule is
made up of a comparator and a notification. Users can then react on a notification,
indicating that someone is already taking care of the notification, and then the system
knows it is not necessary to escalate the notification to the next user in the chain of users
to be notified.

The rules themselves incorporate time span validity, start and end date validity rules,
multiple equality comparators selectable for users. For the selection of the KPIs simple
JSON queries for JSON documents are used, simple XPATH queries for XML documents
are used. For all other transformations necessary, a service from T5.3 Data Harmonisation
can be created and called in between.

5.3.2 Functions / Features

These elements and functionalities that can be added to such a template app are
described as follows:

• KPI Definer: The user can define a name for a KPI as well as the topics and filtering
expression needed to obtain the KPI from the message bus

• Monitoring: The user can select KPIs to monitor its incoming data from the Services
and Message Bus (T6.4) and the Orchestration Run-Time (T5.4)

• Alerting: The user can define rules based on the KPIs. A rule is made up of a
comparator and an alert. Users can then react on an alert, indicating that someone is
already taking care of the alert, and then the system knows it is not necessary to
escalate the alert to the next user in the chain of users to be alerted

The function can be grouped to the following features which have to be realised:

Subtask Subtask description

T54C001
CRUD KPI

Priority: Must

Who: User

When: Run time

Where: Anywhere (in the Monitoring and Alerting UI)
What: Allow the user to define a KPI and its filtering expressions.
Why: Structure data to be monitored

Acceptance Criteria KPIs were created, read, updated, or deleted, HTTP 200

Requirements filled RQ_0174, RQ_0175, RQ_0194, RQ_0201, RQ_0222, RQ_0244, RQ_0396, RQ_0397, RQ_0398,
RQ_0399, RQ_0400, RQ_0401, RQ_0402, RQ_0403, RQ_0406, RQ_0407, RQ_0410, RQ_0557,
RQ_0558, RQ_0559, RQ_0560, RQ_0642, RQ_0643, RQ_0644, RQ_0645, RQ_0759, RQ_0760,
RQ_0761, RQ_0762, RQ_0864, RQ_0868, RQ_0869, RQ_0872, RQ_0873, RQ_0874, RQ_0882,
RQ_0883, RQ_0887, RQ_0888, RQ_0907, RQ_0908, RQ_0914, RQ_0915, RQ_0916, RQ_0917,
RQ_0922, RQ_0925, RQ_0932, RQ_0933, RQ_0934, RQ_0935, RQ_0995, RQ_1010, RQ_1018

T54C002

Get KPI List

Priority: Must

Who: Monitoring and Alerting Component

When: Run time

Where: Anywhere (in the Storage Component)

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 153 / 334

What: Lists existing KPIs, and its filtering expression.
Why: Browse existing KPIs to Monitor its data or create alerts.

Acceptance Criteria List of KPIs was received in JSON structure, HTTP 200

Requirements filled RQ_0174, RQ_0175, RQ_0557, RQ_0558, RQ_0559, RQ_0560, RQ_0759, RQ_0760, RQ_0761,
RQ_0762, RQ_0864, RQ_0868, RQ_0869, RQ_0872, RQ_0873, RQ_0874, RQ_0882, RQ_0883,
RQ_0887, RQ_0888, RQ_0907, RQ_0908, RQ_0914, RQ_0915, RQ_0916, RQ_0917, RQ_0922,
RQ_0925, RQ_0932, RQ_0933, RQ_0934, RQ_0935, RQ_0995, RQ_1010, RQ_1018

T54C003
Monitor KPI data

Priority: Must

Who: User

When: Run time

Where: Anywhere (in the Monitoring and Alerting UI)
What: Monitor incoming KPI data from Message Bus and Orchestration Run-time

Why: Monitor KPIs value, defining Alerts and reducing risks

Acceptance Criteria Connection to the Message Bus was established and if defined queries matched
data to identify KPIs, bounds of rules are checked and actions started if
necessary

Requirements filled RQ_0174, RQ_0175, RQ_0194, RQ_0201, RQ_0222, RQ_0396, RQ_0397, RQ_0398, RQ_0399,
RQ_0400, RQ_0401, RQ_0402, RQ_0403, RQ_0406, RQ_0407, RQ_0410, RQ_0557, RQ_0558,
RQ_0559, RQ_0560, RQ_0642, RQ_0643, RQ_0644, RQ_0645, RQ_0759, RQ_0760, RQ_0761,
RQ_0762, RQ_0864, RQ_0868, RQ_0869, RQ_0872, RQ_0873, RQ_0874, RQ_0882, RQ_0883,
RQ_0887, RQ_0888, RQ_0907, RQ_0908, RQ_0914, RQ_0915, RQ_0916, RQ_0917, RQ_0922,
RQ_0925, RQ_0932, RQ_0933, RQ_0934, RQ_0935, RQ_0995, RQ_1010, RQ_1018

T54C004
CRUD Alert

Priority: Must

Who: User

When: Run time

Where: Anywhere (in the Monitoring and Alerting UI)
What: Create, read, update, and delete alerts, its conditions and the users and
components that should be alerted

Why: Alert users and components in case a KPI value is not in the desired range

Acceptance Criteria An alert was created, read, updated, or deleted, HTTP 200

Requirements filled RQ_0193, RQ_0201, RQ_0222, RQ_0244, RQ_0266, RQ_0267, RQ_0277, RQ_0343, RQ_0396,
RQ_0397, RQ_0398, RQ_0399, RQ_0400, RQ_0401, RQ_0402, RQ_0403, RQ_0406, RQ_0407,
RQ_0410, RQ_0557, RQ_0558, RQ_0559, RQ_0560, RQ_0642, RQ_0643, RQ_0644, RQ_0645,
RQ_0759, RQ_0760, RQ_0761, RQ_0762, RQ_0864, RQ_0868, RQ_0869, RQ_0872, RQ_0873,
RQ_0874, RQ_0882, RQ_0883, RQ_0887, RQ_0888, RQ_0907, RQ_0908, RQ_0914, RQ_0915,
RQ_0916, RQ_0917, RQ_0922, RQ_0925, RQ_0932, RQ_0933, RQ_0934, RQ_0935, RQ_0995,
RQ_1010, RQ_1018

T54C005
Alert users

Priority: Must

Who: Monitoring and Alerting Component

When: Run time

Where: Anywhere (in the Human Collaboration Component)

What: Alert users and components in case a KPI value is not in the desired range

Why: Keep users informed about important or critical situations related to the KPI

Acceptance Criteria Alert is received by user for the chosen action trigger

Requirements filled RQ_0014, RQ_0036, RQ_0037, RQ_0038, RQ_0089, RQ_0147, RQ_0149, RQ_0265, RQ_0277,
RQ_0343, RQ_0344, RQ_0396, RQ_0397, RQ_0398, RQ_0399, RQ_0400, RQ_0401, RQ_0402,
RQ_0403, RQ_0406, RQ_0407, RQ_0410, RQ_0557, RQ_0558, RQ_0559, RQ_0560, RQ_0642,
RQ_0643, RQ_0644, RQ_0645, RQ_0759, RQ_0760, RQ_0761, RQ_0762, RQ_0864, RQ_0868,
RQ_0869, RQ_0872, RQ_0873, RQ_0874, RQ_0882, RQ_0883, RQ_0887, RQ_0888, RQ_0907,
RQ_0908, RQ_0914, RQ_0915, RQ_0916, RQ_0917, RQ_0922, RQ_0925, RQ_0932, RQ_0933,
RQ_0934, RQ_0935, RQ_0995, RQ_1010, RQ_1018

T54C006
React on Alert

Priority: Must

Who: User

When: Run time

Where: Anywhere (in the Monitoring and Alerting UI)
What: The user may react to a received alert, indicating that the alert situation is
already under control or someone is already taking control of the situation,
stopping the notification to other users

Why: Keep track of the alerts and the user’s notifications response

Acceptance Criteria An alert contains URLs for possible user responses and can relate those uniquely
to the choice the user has, which is part of the Human Interaction component

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 154 / 334

Requirements filled RQ_0201, RQ_0222, RQ_0557, RQ_0558, RQ_0559, RQ_0560, RQ_0642, RQ_0643, RQ_0644,
RQ_0645, RQ_0759, RQ_0760, RQ_0761, RQ_0762, RQ_0864, RQ_0868, RQ_0869, RQ_0872,
RQ_0873, RQ_0874, RQ_0882, RQ_0883, RQ_0887, RQ_0888, RQ_0907, RQ_0908, RQ_0914,
RQ_0915, RQ_0916, RQ_0917, RQ_0922, RQ_0925, RQ_0932, RQ_0933, RQ_0934, RQ_0935,
RQ_0995, RQ_1010, RQ_1018

Figure 134: Monitoring and Alerting Functions

5.3.3 Workflows

This section is highlighting the user interaction and the interaction of the component in the
single function.

 CRUD KPI

The Monitoring and Alerting Component allow the user to define a KPI and its filtering
expressions, as can be seen in the following figure.

Figure 135: Define KPI

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 155 / 334

 Get KPI List and Monitor KPI

The KPIs previously defined can be retrieved from the Storage, considering the
Authorisations the user has. The KPI data can be monitored, receiving the values from the
Message Bus and the Orchestration Run-time. The flow is depicted on the following figure.

Figure 136: Get KPI list and Monitor KPI

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 156 / 334

 Create Alerts

The user can create alerts, where the conditions are based on the KPI data, and the user
can select other users and components to be alerted. The conditions contain a comparator
that is applied to the KPI values, and the user can specify a chain of users and
components to be notified, as well as the time between notifications. The flow is depicted
in the following figure.

Figure 137: Creating Alert

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 157 / 334

 Send Alerts and React to Alerts

The Monitoring and Alerting component will send user and component alerts when a KPI
data matches the condition defined for an Alert, the user will be notified through the
Human Collaboration Component (T6.3). After the notification is received, a user can react
on the notification, indicating that the other users in the chain of notification should not
receive the alert. The flow is depicted in the following figure.

Figure 138: Send Alerts and User reaction

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 158 / 334

5.4 Autonomous Computing (T5.5)

5.4.1 Overall functional characterization & Context

The Autonomous Computing component is composed of an API and
a HTML / CSS / JS-based web frontend where users define KPIs,
their desired ranges of values and the processes (designed in T5.4
Orchestration component) to be executed when the KPI’s value
leaves the defined range. The UI also provides graphs and reports
regarding the KPI’s values.

5.4.2 Functions / Features

The elements and functionalities that can be found in the component are described as
follows:

• KPI Subscriber: Where the user subscribes and unsubscribes to/from KPIs

• Autonomous Processes Manager: With this feature the user defines one or more
KPIs, their desired range, and which processes should be executed if the KPI gets
out of range

• KPI Dashboard: Where the user can inspect graphs, reports, and other information
regarding the subscribed KPIs, the Autonomous Processes defined, and the reports
of the processes started autonomously as well

The function can be grouped to the following features:

Subtask Subtask description

T55A001

Subscribe to KPI

Priority: Must

Who: User, must be authorized to read KPI data

When: Design-time / Runtime of the application (topic must be known)

Where: Anywhere on the same level the application publishes events to the bus
What: Subscribe to an existing KPI to react on it and / or push the data to
Storage component for historic data collection and analytics reasons
Why: Monitor and define autonomous processes related to the KPI

Acceptance Criteria Caller gets HTTP 200 and continuously gets new data pushed to KPI topic on the
Message Bus; data gets pushed to Storage

Requirements filled RQ_0333, RQ_0338, RQ_0339, RQ_0348, RQ_0356, RQ_0358, RQ_0359, RQ_0365, RQ_0366,
RQ_0367, RQ_0368, RQ_0369, RQ_0372, RQ_0373, RQ_0374, RQ_0375, RQ_0376, RQ_0377,
RQ_0378, RQ_0395, RQ_0396, RQ_0397, RQ_0398, RQ_0399, RQ_0400, RQ_0401, RQ_0402,
RQ_0403, RQ_0411, RQ_0459, RQ_0493, RQ_0494, RQ_0496, RQ_0514, RQ_0549, RQ_0557,
RQ_0558, RQ_0559, RQ_0560, RQ_0574, RQ_0585, RQ_0629, RQ_0638, RQ_0639, RQ_0741,
RQ_0742, RQ_0757, RQ_0758

T55A002
Unsubscribe to KPI

Priority: Must

Who: User

When: Design-time / Runtime of the application (topic must be known)

Where: Anywhere on the same level the application publishes events to the bus
What: Remove subscription to a KPI previously subscribed

Why: Stop monitoring and defining autonomous processes related to the KPI

Acceptance Criteria Caller gets HTTP 200 and stop getting new data pushed to KPI topic on the
Message Bus; data gets updated in Storage

Requirements filled RQ_0333, RQ_0339, RQ_0348, RQ_0359, RQ_0368, RQ_0369, RQ_0377, RQ_0378, RQ_0395,
RQ_0396, RQ_0397, RQ_0398, RQ_0399, RQ_0400, RQ_0401, RQ_0402, RQ_0403, RQ_0496,
RQ_0514, RQ_0549, RQ_0557, RQ_0558, RQ_0559, RQ_0560, RQ_0574, RQ_0585, RQ_0629,
RQ_0638, RQ_0639

T55A003
Get KPI Data

Priority: Must

Who: Autonomous Computing Component

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 159 / 334

When: Design-time / Runtime of the application (topic must be known)

Where: Anywhere on the same level the application publishes events to the bus
What: Gets KPI data, such as values over time, starting processes, etc

Why: Present KPI information and graphs to the user.

Acceptance Criteria Invoker got structured data from the KPI

Requirements filled RQ_0338, RQ_0339, RQ_0345, RQ_0346, RQ_0356, RQ_0358, RQ_0365, RQ_0366, RQ_0367,
RQ_0369, RQ_0378, RQ_0395, RQ_0396, RQ_0397, RQ_0398, RQ_0399, RQ_0400, RQ_0401,
RQ_0402, RQ_0403, RQ_0411, RQ_0459, RQ_0514, RQ_0557, RQ_0558, RQ_0559, RQ_0560,
RQ_0574, RQ_0585, RQ_0638, RQ_0639, RQ_0757, RQ_0758

T55A004
CRUD Autonomous
Process for KPI

Priority: Must

Who: User

When: Design-time / Runtime of the application (topic must be known)

Where: Anywhere on the same level the application publishes events to the bus
What: Define / Update / Remove conditions and actions

Why: Control a KPI and optimize the response time for countermeasures

Acceptance Criteria Caller gets HTTP response, and a Json object with the Autonomous Process
object.

Requirements filled RQ_0333, RQ_0334, RQ_0336, RQ_0337, RQ_0338, RQ_0339, RQ_0340, RQ_0348, RQ_0352,
RQ_0353, RQ_0354, RQ_0356, RQ_0358, RQ_0359, RQ_0365, RQ_0366, RQ_0367, RQ_0368,
RQ_0369, RQ_0372, RQ_0373, RQ_0374, RQ_0375, RQ_0376, RQ_0377, RQ_0378, RQ_0395,
RQ_0396, RQ_0397, RQ_0398, RQ_0399, RQ_0400, RQ_0401, RQ_0402, RQ_0403, RQ_0411,
RQ_0493, RQ_0494, RQ_0496, RQ_0497, RQ_0498, RQ_0499, RQ_0500, RQ_0501, RQ_0502,
RQ_0503, RQ_0504, RQ_0549, RQ_0557, RQ_0558, RQ_0559, RQ_0560, RQ_0574, RQ_0585,
RQ_0629, RQ_0638, RQ_0639, RQ_0741, RQ_0742, RQ_0757, RQ_0758

T55A005
Get Autonomous
Process for KPI

Priority: Must

Who: Autonomous Computing Component

When: Design-time / Runtime of the application (topic must be known)

Where: Anywhere on the same level the application publishes events to the bus
What: Gets the defined Autonomous Processes for a KPI

Why: Browse the KPI’s autonomous processes, to present a UI

Acceptance Criteria A JSON with a structured list of processes and the currently set rules are
returned with a HTTP 200.

Requirements filled RQ_0336, RQ_0337, RQ_0338, RQ_0339, RQ_0345, RQ_0346, RQ_0354, RQ_0359, RQ_0368,
RQ_0369, RQ_0378, RQ_0585

T55A006
Monitor KPI’s values
and Start Actions

Priority: Must

Who: Autonomous Computing Component

When: Design-time / Runtime of the application (topic must be known)

Where: Anywhere on the same level the application publishes events to the bus
What: Receive the KPI data/values from the message bus and apply the rules
to see if any process must be started.

Why: Start processes or actions when the KPI data matches the rules defined

Acceptance Criteria When KPIs are out of bounds, notifications, or actions to correct the KPI are
started.

Requirements filled RQ_0333, RQ_0334, RQ_0335, RQ_0336, RQ_0337, RQ_0338, RQ_0339, RQ_0340, RQ_0348,
RQ_0352, RQ_0353, RQ_0354, RQ_0356, RQ_0358, RQ_0359, RQ_0365, RQ_0366, RQ_0367,
RQ_0368, RQ_0369, RQ_0372, RQ_0373, RQ_0374, RQ_0375, RQ_0376, RQ_0378, RQ_0395,
RQ_0396, RQ_0397, RQ_0398, RQ_0399, RQ_0400, RQ_0401, RQ_0402, RQ_0403, RQ_0411,
RQ_0459, RQ_0496, RQ_0497, RQ_0498, RQ_0499, RQ_0500, RQ_0501, RQ_0502, RQ_0503,
RQ_0504, RQ_0514, RQ_0549, RQ_0557, RQ_0558, RQ_0559, RQ_0560, RQ_0574, RQ_0585,
RQ_0629, RQ_0638, RQ_0639, RQ_0741, RQ_0742, RQ_0757, RQ_0758

Figure 139: Autonomous Computing Function

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 160 / 334

5.4.3 Workflows

 Search and Subscribe to a KPI

The Autonomous Computing component allows a user to subscribe to a KPI in order to
monitor its values and define conditions and actions (autonomous processes) related to it,
and for this it must obtain the list of KPIs the user has permission to subscribe to. The

subscribing process is described in the following figure.

Figure 140: Retrieve KPI’s available and Subscribe to it

 Search Subscribed KPI’s and Unsubscribe from KPIs

The Autonomous Computing component allows a user to unsubscribe to a KPI to stop
monitoring its values, and the user can decide to keep or not the conditions and actions
they previously defined to the unsubscribed KPI. The unsubscribing process is described

in the following figure.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 161 / 334

Figure 141: Retrieve subscribed KPI’s and unsubscribe to it

 Get KPI data

The Autonomous Computing component displays information about the subscribed KPI’s,
such as historic data, autonomous actions log, etc and as is described in the following
figure.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 162 / 334

Figure 142: Display subscribed KPI’s information

 Define Conditions and Actions related to KPI

The Autonomous Computing component allows the definition of conditions and actions
related to KPI’s, so that an action is started whenever the KPI meets the conditions
defined. The following figure describes the definition process, the processes of editing and
deleting the conditions and actions will not be described in the diagram.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 163 / 334

Figure 143: Display processes and define conditions and actions for the KPI

 Get Conditions and Actions related to KPI

The Autonomous Computing component shall allow other ZDMP assets to obtain the
definition of conditions and actions related to KPI’s previously defined.

The main steps are:

• An asset requests the Conditions and Actions related to the KPI it specified

• The Autonomous Computing component obtains the list of Conditions and Actions
related to the KPI

• The Autonomous Computing request to the Secure Authentication / Authorisation
component the authorisations the requesting asset must see the KPI and its
Conditions and Actions

• The Autonomous Computing return to the asset the Conditions and Actions it has
authorisation to access from the specified KPI

 Monitor KPI’s values and Start Actions

The Autonomous Computing component monitors the KPI’s values, so that an action is
started whenever the KPI meets the conditions defined. The following figure describes this
process.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 164 / 334

Figure 144: Monitor KPI’s values and Start Actions

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 165 / 334

5.5 AI-Analytics Run-time (T5.6)

5.5.1 Overall functional characterisation & Context

The AI-Analytics Run-time component deploys machine learning
models to the ZDMP platform where they can be run both offline and
online using data from real-time production process. Thus, users can
get in real-time notifications and alerts of some uncommon behaviour that could appear, and,
in the meantime, ZDMP applications can adjust the production parameters to avoid defects.

5.5.2 Functions / Features

• Model download: Models created in AI-Analytics component and uploaded in
Marketplace can be imported using the Deployer module, via Deployer API, to be run
later against production data

• Model run: Models imported from Marketplace can be run by the Production Model
Server, using online or offline data, to discover anomalies and to prevent failures

• Production data feed: The machine learning model needs real production data to
run. These data can be pulled from running zApps installed on production assets or
from Storage, via Analytics API

• Notification issue: In the machine learning running process, Production Model
Server component can raise usual status messages and, when anomalies occurred
can raise notifications and alerts. All messages are broadcasted to other ZDMP
components via Notification API

• Process Control: Analytics UI has the role of allowing users to connect to
Marketplace and fetch models, connect to zApps and Storage data sources,
schedule and run machine learning models and display status, messages, and
notifications

• Analytics Visualisation: The user can see numerical and/or graphical
representations of machine learning running processes and to create aggregated
queries and retrieve data in the form of reports (data tables, spreadsheet and/or CSV
files) or graphic (charts, graphs), using Analytics UI and Visualisation modules

• Analytics storage: Data Warehouse module is the central repository for AI-Analytics
Run-time component where all data used in machine learning running process can
be stored for further running processes and analytics queries

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
T56B001
Connect to
marketplace

Priority: Must

Who: AI-Analytics Run-time
Where: Anywhere
When: Run-time
What: Access Marketplace and open machine learning models page
Why: So that a machine learning model can be imported

Acceptance Criteria Application connected successfully

Requirements filled N/A

T56B002 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 166 / 334

Import model Who: AI-Analytics Run-time
Where: Anywhere
When: Run-time
What: Find machine learning model and import into Deployer module
Why: So that the model can be run against production data

Acceptance Criteria Model successfully downloaded

Requirements filled N/A

T56B003
Schedule model

Priority: Must

Who: AI-Analytics Run-time
Where: Anywhere
When: Run-time
What: Select a model and program it for running at a specific date and time
Why: So that the model can be run against production data

Acceptance Criteria Model successfully scheduled

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56B004
Connect to zApps
Data source

Priority: Must

Who: AI-Analytics Run-time
Where: Anywhere
When: Run-time
What: Find a proper zApps and connect to it for access their data source
Why: So that the model can run against real-time data provided by zApps

Acceptance Criteria zApps successfully connected

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56B005
Connect to storage
data source

Priority: Must

Who: AI-Analytics Run-time
Where: Anywhere
When: Run-time
What: Connect to Storage to a specific data source
Why: So that the model can run against offline data provided by Storage
database

Acceptance Criteria Storage successfully connected

Requirements filled N/A

T56B006
Run model

Priority: Must

Who: AI-Analytics Run-time
Where: Anywhere
When: Run-time
What: Run a machine learning model against real production data
Why: So that the anomalies can be discovered, and failures can be
prevented

Acceptance Criteria Model successfully run

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56B007
Model control UI

Priority: Must

Who: AI-Analytics Run-time
Where: Anywhere
When: Run-time
What: Displays data, status and anomalies detected on a running model
Why: So that the user can be informed about the running model

Acceptance Criteria The information is successfully displayed

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 167 / 334

RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56B008
Notification issue

Priority: Must

Who: AI-Analytics Run-time
Where: Anywhere
When: Run-time
What: Send notifications other component about a running model
Why: So that the ZDMP components can be notified about anomalies
occurred

Acceptance Criteria Notification successfully sent

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56B009
Analytics queries

Priority: Must

Who: AI-Analytics Run-time
Where: Anywhere
When: Run-time
What: Creates analytics queries on data processed by the machine learning
models.
Why: So that the user can get the data computed with analytic functions.

Acceptance Criteria Queries successfully created

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56B010
Display graphs

Priority: Must

Who: AI-Analytics Run-time
Where: Anywhere
When: Run-time
What: Display graphs based on analytics queries
Why: So that the user can see graphical representations of analytics data

Acceptance Criteria Graphs successfully displayed

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

T56B011
Analytics storage

Priority: Must

Who: AI-Analytics Run-time
Where: Anywhere
When: Run-time
What: Stores the data computed with analytics functions
Why: So that a future representation of data is possible

Acceptance Criteria Data successfully saved.

Requirements filled RQ_0034, RQ_0035, RQ_0038, RQ_0045, RQ_0048, RQ_0051, RQ_0084, RQ_0095,
RQ_0101, RQ_0103, RQ_0120, RQ_0137, RQ_0173, RQ_0174, RQ_0175, RQ_0178,
RQ_0179, RQ_0180, RQ_0181, RQ_0189, RQ_0194, RQ_0201, RQ_0217, RQ_0218,
RQ_0222, RQ_0305, RQ_0305, RQ_0307, RQ_0325, RQ_0329

Figure 145: AI Analytics Runtime Functions

5.5.3 Workflows

The following sub-sections describe the sequence diagrams of the AI-Analytics Run-time
component.

 Connect to marketplace

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 168 / 334

Figure 146: Connect to Marketplace sequence diagram

 Import model

The following diagram explains this function and the necessary interactions with other
components.

Figure 147: Import model sequence diagram

 Connect to data sources

The following diagram explains this function and the necessary interactions with other
components.

Figure 148: Connect to Marketplace sequence diagram

 Schedule, run, control model and notifications

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 169 / 334

Figure 149: Schedule, run, control model and notifications sequence diagram

 Analytics queries, display graphs and save data

The following diagram explains this function and the necessary interactions with other
components.

Figure 150: Analytics queries, display graphs and save data sequence diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 170 / 334

5.6 Service and Message Bus (T6.4)

5.6.1 Overall Functional Characterisation & Context

The T6.4 Services and Message Bus component belongs to the
“communication, storage or management related infrastructure”. It
represents the communication layer of the ZDMP Platform by providing
a holistic communication for all services, end-user applications and
components being used within ZDMP:

First, it enables ZDMP Assets to use other ZDMP Assets in a standardized and secure
way. This is achieved through manageable REST APIs provided by a Services API
Management which exposes specific services offered by the connected ZDMP Assets.
These APIs can be fully customized, eg to only expose certain functions or to restrict the
API access to specific entities.

Second, the T6.4 Services and Message Bus component provides ZDMP Assets with a
message bus – a standardized communication interface to exchange messages, events,
and data. This message bus implements a publish/subscribe messaging concept, which
allows the connected ZDMP Assets to broadcast (publish) information on specific topics
and to listen for certain events on these topics(subscribe).

Third, the T6.4 Services and Message Bus provides an alternative way to integrate ZDMP
Assets and other components into the ZDMP Platform that could not be directly connected
via a REST API and/or the message bus, eg because of proprietary protocols or missing
service interfaces. This is achieved by implementing custom connectors that connect
these sources to the Services API Management and/or the Message Bus via the
Integration Server subcomponent. Note that the usage of the Integration Server
subcomponent is optional and depends on the final use cases.

5.6.2 Functions / Features

The T6.4 Services and Message Bus provides the following high-level functions:

• API Management: The T6.4 Services API Management module allows ZDMP
Platform and zApp developers to define and configure REST APIs to expose services
provided by their ZDMP Assets. This also includes services provided by external
platforms via the T6.5 Inter-platform Interoperability component.

• API Access Control: The T6.4 Services API Management module restricts the
access to the provided APIs by using access tokens issued by the T5.2 Secure
Authentication/Authorisation component. Through this, the APIs can only be
accessed by ZDMP Assets that are authorized by the T5.2 Security
Authentication/Authorisation component.

• API Logging and Usage Statistics: The T6.4 Services API Management logs and
monitors the API calls for usage statistics, error reports and fraud detection.

• Message Bus: The T6.4 Services and Message Bus provides a Message Bus to
enable ZDMP Assets to exchange information and data using the Publish/Subscribe
Messaging concept.

• Message Bus Access Control: Like the T6.4 Services API Management, the T6.4
Message Bus restricts the access to its functionality via access tokens issued by the
T5.2 Secure Authentication/Authorisation component. This ensures that only
authorised ZDMP Assets get access to confidential information and data.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 171 / 334

• Integration of ZDMP Assets: The T6.4 Services and Message Bus provides an
optional Integration Server component to offer an alternative way for integrating
ZDMP Assets that could not be directly connected to the T6.4 Services API
Management or the T6.4 Message Bus.

• Streaming Analytics: The Services and Message Bus provides components to
perform streaming analytics and complex event processing.

These high-level functions can be grouped to the following features, which must be
realised:

Subtask Subtask description
T64A001
Management of APIs

Priority: Must

Who: ZDMP Platform Developers and zApp Developers
Where: Anywhere
When: Design time and during the lifecycle of ZDMP Assets
What: Creation, configuration, and deletion of REST APIs
Why: To expose services provided by ZDMP Assets via (parameterized) API
functions to other ZDMP Assets in a standardised and secure way

Acceptance Criteria The T6.4 Services API Management provides the functionality to create and
delete individually configurable REST APIs. These APIs provide authorised
ZDMP Assets with access to specific services provided by other ZDMP Assets
via (parameterized) API functions. An API function definition includes

• a predefined set of accepted parameters,

• a service call that will be performed when the API function is called, and

• a return value that is returned to the caller of the API function once the
service call has been performed

APIs as well as API functions can be changed and deleted at any time.
The API management functionality provided by this feature can be used both via
a graphical user interface and via a REST API

Requirements filled RQ_0017, RQ_0030, RQ_0033, RQ_0066, RQ_0094, RQ_0099, RQ_0100, RQ_0160, RQ_0168,
RQ_0202, RQ_0321, RQ_0322, RQ_0626, RQ_0679, RQ_0738, RQ_0797, RQ_0867

T64A002
API access tokens

Priority: Must

Who: T6.4 Services API Management
Where: Anywhere
When: Design time, whenever a new API is created. Runtime, whenever an
access token is re-issued or revoked by the T5.2 Secure Authentication /
Authorisation component
What: (De-)Registration of API access token issued by the T5.2 Secure
Authentication/Authorisation component
Why: To restrict the API access to only those ZDMP Assets that are authorised
by the T5.2 Secure Authentication/Authorisation component

Acceptance Criteria The T6.4 Services API Management stores individual access tokens for each
managed API. These access tokens are requested from the T5.2 Secure
Authentication/Authorisation component by the T6.4 Services API Management
upon API creation and are required by ZDMP Assets to get access to the API’s
functions.
The T6.4 Services API Management marks the API’s access token as obsolete
at the T5.2 Secure Authentication/Authorisation component if an existing API is
deleted. Additionally, the T6.4 Services API Management replaces or deletes a
stored access token if the original token is re-issued or revoked by the T5.2
Secure Authentication/Authorisation component

Requirements filled N/A

T64A003
API function calls

Priority: Must

Who: ZDMP Assets
Where: Anywhere
When: Runtime, whenever a ZDMP Asset needs the functionality of a service
exposed through the T6.4 Services API Management and has a valid access
token

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 172 / 334

What: Calling a service via an API function
Why: To perform a certain action that requires or uses the functionality provided
by an exposed service

Acceptance Criteria The API functions defined in the T6.4 Services API Management can be called
from authorised ZDMP Assets. For authorisation, the ZDMP Assets must provide
a valid access token issued by the T5.2 Secure Authentication/Authorisation
component. Subsequently, the API function calls the underlying service and
returns its result to the calling ZDMP Asset

Requirements filled RQ_0017, RQ_0030, RQ_0033, RQ_0066, RQ_0094, RQ_0099, RQ_0100, RQ_0160, RQ_0168,
RQ_0202, RQ_0321, RQ_0322, RQ_0626, RQ_0679, RQ_0738, RQ_0797, RQ_0867

T64A04
API logging

Priority: Must

Who: T6.4 Services API Management
Where: Anywhere
When: Runtime, whenever an API is invoked
What: Logging of API calls
Why: To derive meta information about the individual APIs such as usage
statistics and error reports. This information is used by the T5.4 Monitoring and
Alerting component to monitor the execution of APIs and services.

Acceptance Criteria The T6.4 Services API Management logs each API call including the following
information:

• Timestamps

• Calling entity

• Accessed function

• Encountered errors
Requirements filled N/A

T64A005
API documentation

Priority: Must

Who: ZDMP Platform Developers and zApp Developers
Where: Anywhere
When: Design time and during the API lifecycle
What: Documentation of APIs and API functions
Why: To provide a description and details about the APIs and their functions
including function parameters and return values

Acceptance Criteria The T6.4 Services API Management provides the functionality to enter
documentation for each API. This includes a textual description of the API and its
functions as well as details about a function’s parameters and return values. This
documentation can be queried by the T5.4 Orchestration Designer, the T6.1
Application Builder and the T6.2 Marketplace

Requirements filled N/A

T64A006
(De-)Activation of APIs

Priority: Should

Who: ZDMP Platform Developers and zApp Developers
Where: Anywhere
When: Runtime, whenever APIs need to be (temporarily) switched off or on
What: (De-)Activation of APIs and API functions
Why: To (temporarily) prevent exposed services from being called by ZDMP
Assets

Acceptance Criteria APIs can be activated and deactivated. If an API is activated, its functions can be
called by ZDMP Assets as described in T64A003. If an API is deactivated, an
error message is returned to the calling ZDMP Asset stating that the API is
(temporarily) not available

Requirements filled N/A

T64A007
Versioning of APIs

Priority: Should

Who: ZDMP Platform Developers and zApp Developers
Where: Anywhere
When: Design time and Runtime, whenever an API is changed
What: Creation, deletion, and modification of different API versions

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 173 / 334

Why: To provide different feature sets per API version and to maintain downward
compatibility over the lifecycle of an API

Acceptance Criteria Different versions of the same API can be created, deleted, and modified. Each
API version is tagged with a unique identifier and can be managed independently
from other versions of the same API

Requirements filled N/A

T64A008
Mocking of APIs

Priority: Should

Who: ZDMP Platform Developers and zApp Developers
Where: Anywhere
When: Design time, whenever the functionality of an API function must be
evaluated
What: Definition of predefined responses (return values) for all functions
provided by an API and corresponding parameterisations
Why: To evaluate and debug the functionality of the API functions under specific
parametrizations and conditions

Acceptance Criteria For each function provided by an API and corresponding parameterisations, a
specific mocked response can be defined. If defined, this mocked response is
returned instead of the result of the real service call whenever the corresponding
API function and parameterisation is called

Requirements filled N/A

T64B001
Message Bus access
tokens

Priority: Must

Who: T6.4 Message Bus
Where: Anywhere
When: On system boot and whenever an access token is re-issued or revoked
by the T5.2 Secure Authentication/Authorisation component
What: (De-)Registration of Message Bus access tokens issued by the T5.2
Secure Authentication/Authorisation component
Why: To restrict the access to the Message Bus API to only those ZDMP Assets
that are authorised by the T5.2 Secure Authentication/Authorisation

Acceptance Criteria The T6.4 Message Bus stores individual access tokens to authorise ZDMP
Assets to access the Message Bus’s functions provided by the T6.4 Message
Bus API. These access tokens are requested from the T5.2 Secure
Authentication/Authorisation component by the T6.4 Message Bus

• on system boot to create a token pair that grant access to the topic
management API functions (create & delete)

• upon creation of new topics to create a token pair that grant access to the
publish and subscribe API functions of this new topic

The T6.4 Message Bus marks a topic-specific token pair as obsolete at the T5.2
Secure Authentication/Authorisation component if a topic is deleted. Additionally,
the T6.4 Message Bus replaces or deletes a stored access token or pair if the
original token or the pair is re-issued or revoked by the T5.2 Secure
Authentication/Authorisation component

Requirements filled N/A

T64B002
Message Bus Topic
Management

Priority: Must

Who: ZDMP Assets
Where: Anywhere
When: Runtime, whenever a ZDMP Asset needs to create a new topic or delete
an existing one
What: Creation and deletion of Message Bus Topics
Why: to define and delete topics

• on which ZDMP Assets can publish information and,

• to which ZMDP Assets can subscribe to receive information
Acceptance Criteria The T6.4 Message Bus provides the functionality to define and delete topics.

Each topic must have a unique name, ie no duplicates are allowed. A topic is
represented as a text string. This string may contain forward slashes (“/”) to
indicate different topic levels.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 174 / 334

The topic management functions can only be accessed by authorised ZDMP
Assets that provide valid, function-specific (create, delete) access tokens issued
by the T5.2 Secure Authentication/Authorisation component as described in
function T64B001.

Requirements filled RQ_0030, RQ_0099, RQ_0100, RQ_0202, RQ_0321, RQ_0322, RQ_0626, RQ_0679, RQ_0738,
RQ_0797, RQ_0867

T64B003
Publishing messages
on topics and
subscribing to topics

Priority: Must

Who: ZDMP Assets
Where: Anywhere
When: Runtime, whenever information must be broadcasted to other ZDMP
Assets and whenever ZDMP Assets want to listen for information and certain
events
What: Publishing of messages incl. payloads on certain topics and subscribing to
specific topics to receive messages and their payload
Why: to broadcast information to other ZDMP Assets that are subscribed to a
specific topic

Acceptance Criteria The T6.4 Message Bus allows authorised ZDMP Assets to broadcast (publish)
messages and data on certain topics and to receive messages and data by
subscribing to relevant topics. For authorisation, the ZDMP Assets must provide
valid, function- and topic-specific access tokens (publish, subscribe) issued by
the T5.2 Secure Authentication/Authorisation component. The T6.4 Message
Bus validates this access token by comparing it with the access token stored for
the intended action (publish or subscribe) and topic. If the provided token is valid,
the intended action is performed. Otherwise, an error message is returned to the
ZDMP Asset.

Requirements filled RQ_0030, RQ_0099, RQ_0100, RQ_0202, RQ_0321, RQ_0322, RQ_0626, RQ_0679, RQ_0738,
RQ_0797, RQ_0867

T64C001
Optional integration of
Enterprise Tier,
Platform Tier, and
Edge Tier components

Priority: Should

Who: Platform Developers
Where: Anywhere
When: Design time
What: Integration of ZDMP Assets and other components using Integration
Connectors
Why: To integrate components that could not be connected otherwise to the
T6.4 Services API Management and the T6.4 Message Bus, eg because of
unsupported service interfaces

Acceptance Criteria The T6.4 Integration Server provides the functionality to integrate ZDMP
components and modules via Integration Connectors. These connectors connect
the integrated component to the internal communication bus of the T6.4
Integration Server to:

• Expose the integrated components as REST services via the Services API
Management

• Connect the integrated components to the T6.4 Message Bus

Requirements filled N/A

T64D001
Complex Event
Processing

Priority: Should

Who: Platform Developers and zApp Developers
Where: Anywhere
When: Design time
What: Definition of Complex Event Processing rules and actions
Why: To perform certain actions when specific events or messages are received
via the T6.4 Message Bus

Acceptance Criteria The T6.4 Complex Event Processing processes and analyses low-level events
such as sensor data received on the T6.4 Message Bus and triggers specific
actions when certain conditions are met, or rules are fulfilled. These conditions,
rules and actions can be defined by Platform Developers and zApp Developers.

Requirements filled N/A

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 175 / 334

Figure 151: Service and Message Bus Functions

5.6.3 Workflows

 API Management

This feature enables ZDMP Platform Developers and zApp Developers to create, delete
and configure REST APIs and API functions to expose services provided by their ZDMP
Assets to other ZDMP Assets (T64A001).

The general workflow for all interactions covered by feature T64A001 is as follows:

• The ZDMP Platform Developers and zApp Developers interact with the T6.4 Services
API Management either via the T6.4 API Management UI or directly via a REST API

• The T6.4 Services API Management performs the API management action and either
returns a success or an error message depending on the result of the performed
action

• If used, the T6.4 API Management UI shows the updated states of the user’s APIs

Additionally, the access to the different APIs is controlled via access tokens issued and
maintained by the T5.2 Secure Authentication/Authorisation component (T64A002). See

 Creation of REST APIs

ZDMP Platform Developers and zApp Developers can create REST APIs at the T6.4
Services API Management. This allows them to expose services provided by their newly
developed and deployed ZDMP Assets. APIs can be either created from scratch or
imported using the Swagger, RAML, or WSDL format.

Creating an API triggers the following actions (Figure 152 – T64A001/2a):

• The T6.4 Services API Management component instantiates a new API using the
parameters provided by the user (API name, API functions, etc). If any API function is
specified, it is created according to the workflow described below

• The created API is assigned a unique ID and is stored in the T6.4 Services API
Management API registry

• The T6.4 Services API Management requests an access token for the created API
from the T5.2 Secure Authentication/Authorisation component. This token is stored in
the T6.4 Services API Management registry for authorisation checks

 Creation of REST API functions

To expose individual services provided by their ZDMP Assets, ZDMP Platform Developers
and zApp Developers must define parameterised API functions within an existing API. This
includes the definition of parameter types, return value types and the service endpoint of
the ZDMP Asset exposed by the API function (Figure 152 – T64A001/2b).

 Deletion of APIs and API functions

ZDMP Platform Developers and zApp Developers can delete whole APIs or individual API
functions at any time. This triggers the following actions (Figure 152 – T64A001/2c):

• Depending on the use case, the T6.4 Services API Management either deletes the
specified API from its API registry (including all API functions) or removes the

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 176 / 334

specified API function from its parent API. As a result, the deleted functions can be
no longer accessed

• If an API is deleted, the access token stored for this API is removed from the T6.4
Services API Management registry and marked as obsolete at the T5.2 Secure
Authentication/Authorisation component

 Modification of API functions

ZDMP Platform Developers and zApp Developers can modify existing API functions. Once
submitted, the T6.4 Services API Management applies the changes to the specified API
function.

 Re-issuing and revocation of access tokens

The T5.2 Secure Authentication/Authorisation component can re-issue, or revoke issued
API access tokens at any time. This triggers the following actions:

• If an access token is re-issued, the existing access token in the T6.4 Services API
Management registry is immediately replaced by the new token. Afterwards, ZDMP
Assets must provide the new access token to get access to the corresponding API

• If an access token is revoked, the T6.4 Services API Management registry removes
the token from its registry. This results in the corresponding API cannot be accessed
by any ZDMP Asset until a new access token is issued

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 177 / 334

Figure 152: Sequence diagram showing the workflows for creating and deleting APIs and
API functions

 API function calls

This feature enables ZDMP Assets to call API functions provided by the T6.4 Services API
Management to access the ZDMP resources exposed by these individual functions
(T64A003). To call a specific API function, a ZDMP Asset must provide a valid access
token issued by the T5.2 Secure Authentication/Authorisation component for this API.

When a ZDMP Asset calls an API function, the following actions are triggered (see Figure
153):

• The T6.4 Services API Management validates the access token provided by the
ZDMP Asset by comparing it to the token stored for the corresponding API. If the
access token is invalid, an error message is returned to the calling ZDMP Asset and
the further workflow is stopped

• The T6.4 Services API Management executes the API function using the parameters
provided by the calling ZDMP Asset. If the parameters are invalid, an error message
is returned to the calling ZDMP Asset and the further workflow is stopped. Otherwise,
the underlying parameterized service is called as defined in the API function
definition

• Once the result of the service call is returned to the T6.4 Services API Management,
the result is optionally transformed as defined in the API function. Subsequently, the
(transformed) result is sent back to the calling ZDMP Asset

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 178 / 334

Figure 153: Sequence diagram showing the API function call workflow

 API logging

This feature enables the T6.4 Services API Management to log the execution of API calls
to acquire and derive meta information of APIs such as usage statistics and error reports
(T64A004).

Whenever an API function is called with API logging enabled, the T6.4 Services API
Management logs the following information:

• Timestamp

• Calling entity

• Accessed function

• Encountered errors

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 179 / 334

 Activation and Deactivation of APIs

This feature enables ZDMP Platform Developers and zApp Developers to (temporarily)
deactivate and activate their APIs (T64A006), eg for maintenance purposes. This triggers
the following actions:

• If an API is deactivated, the T6.4 Services API Management completely disables the
access to the deactivated API and its functions. If a function of a deactivated API is
called, an error message is sent back to the calling ZDMP Asset stating that the API
is (temporarily) not available

• If an API is activated, its API functions can be accessed again as normal (ie, as
described in T64A003)

 API Versioning

This feature enables ZDMP Platform Developers and zApp Developers to create, delete
and modify different versions of their APIs (T64A007).

 Creation of a new API version

When ZDMP Platform Developers and zApp Developers create a new version of one of
their APIs, the following actions are triggered:

• The T6.4 Services API Management selects the current version of the specified API
from its API registry

• The T6.4 Services API Management creates a latest version of this API by cloning
the entire API configuration (API function definitions, documentation, etc) and
assigning an increased version number

• The new API version runs in parallel with the other versions of the same API. ZDMP
Assets also must specify the API version when calling API functions

 Deletion of an API version

ZDMP Platform Developers and zApp Developers can delete specific versions of their
APIs at any time. This triggers the following actions:

• The Services API Management selects the specified API version

• The Services API Management removes the specified API from its API registry

• If a ZDMP Asset calls an API function of a deleted API version, an error message is
return the calling ZDMP Asset stating that the API version is no longer available

 Modification of an API version

When ZDMP Platform Developers and zApp Developers modify one of their APIs, the
following actions are triggered:

• The T6.4 Services API Management selects the specified API version from its
registry

• The Services API Management applies the specified changes to the selected API
version

• The changes take effect immediately

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 180 / 334

 API Mocking

This feature enables ZDMP Platform Developers and zApp Developers to create mocked
responses for their API functions (T64A008), eg for testing or debugging purposes. The
workflow representing this feature is as follows:

• The Developer defines the mocked response for a specific API function and
parameterisation

• The T6.4 Services API Management activates the mocking functionality for the
specified API function and stores the mocked response

• When the function is called with the corresponding parameterisation, the stored
mocked response is returned to the caller of the API function instead of calling the
real service and returning its result

 Message Bus access tokens

The T6.4 Message Bus maintains a registry of access tokens to authorise the access to its
API functions. These tokens are requested from the T5.2 Secure Authentication /
Authorisation component at runtime as described below.

 Access tokens for creating and deleting topics

The T6.4 Message Bus stores two different access tokens to verify if a ZDMP Asset is
authorised to create or delete topics. This token pair is requested from the T5.2 Secure
Authentication/Authorisation component on system boot.

 Access tokens for publishing on topics and subscribing to topics

Additionally, the T6.4 Message Bus stores two different access tokens for each individual
topic. These tokens are used to verify if a ZDMP Asset is authorised to publish messages
on a specific topic or to subscribe to a specific topic. This token pair is requested from the
T5.2 Secure Authentication/Authorisation component upon topic creation (see Section
Message Bus Interaction).

 Re-issuing and revocation of access tokens

The T5.2 Secure Authentication/Authorisation component can re-issue, or revoke issued
Message Bus access tokens at any time. This triggers the following actions:

• If an access token is re-issued, the existing access token in the T6.4 Message Bus
registry is immediately replaced by the new token. Afterwards, ZDMP Assets must
provide the new access token to get access to the corresponding API function

• If an access token is revoked, the T6.4 Message Bus registry removes the token from
its registry. This results in the corresponding API function cannot be accessed by any
ZDMP Asset until a new access token is issued

 Message Bus interaction

The T6.4 Services and Message Bus component implements a Message Bus module. It
enables ZDMP Assets to exchange information and data using the Publish/Subscribe
messaging concept (T64B001 and T64B002).

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 181 / 334

 Creation of topics

ZDMP Assets can create new topics on-the-fly via the T6.4 Message Bus API. Each topic
must be unique, ie no duplicates are allowed. Additionally, the ZDMP Asset must be
authorised to create a topic, which is verified by providing an access token issued by the
T5.2 Secure Authentication/Authorisation component. The creation of a new topic is
represented by the following workflow (see Figure 154 - T64B002a):

• A new topic is defined in the form of a text string. This string can be optionally
separated by topic levels indicated by a forward slash (eg
production/data/sensor_42).

• The ZDMP Asset calls the API function to create a new topic and passes the topic as
well as an access token as function arguments

• The T6.4 Message Bus validates the provided access token. If the token is invalid, an
“access denied” error message is returned

• The T6.4 Message Bus checks if the specified topic already exists. In this case, a
“duplicate topic” error message is returned

• The T6.4 Message Bus creates the specified topic. Afterwards, it requests two
access tokens from the T5.2 Secure Authentication/Authorisation component and
stores them in its registry. The first access token is used to authorise ZDMP Assets
to publish messages on the new topic, while the second token is required to
subscribe to the new topic

 Deletion of topics

Authorised ZDMP Assets can delete topics at any time via the T6.4 Message Bus API. The
authorisation is verified by providing an access token issued by the T5.2 Secure
Authentication/Authorisation component. The deletion of a topic triggers the following
actions (see Figure 154 - T64B002b):

• The ZDMP Asset calls the API function to delete a specific topic and passes the topic
as well as an access token as function arguments

• The T6.4 Message Bus validates the provided access token. If the token is invalid, an
“access denied” error message is returned

• The T6.4 Message Bus checks if the specified topic exists. If not, an error message is
returned

• The T6.4 Message Bus deletes the specified topic. As a result, publishing messages
on the deleted topic is no longer possible and the subscribed ZDMP Assets no longer
receive messages on the deleted topic

• The T6.4 Message Bus marks the access tokens stored for the deleted topic as
obsolete at the T5.2 Secure Authentication/Authorisation component

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 182 / 334

Figure 154: Sequence diagram illustrating the creation and deletion of topics

 Subscribing to topics

ZDMP Assets can subscribe to existing topics at any time via the T6.4 Message Bus API.
Afterwards, they can receive messages that are published on the subscribed topic.
Subscribing to a specific topic triggers the following actions (see Figure 154 - T64B003a):

• The ZDMP Asset calls the corresponding T6.4 Message Bus API function and
provides the desired topic and the corresponding subscriber access token as function
arguments

• The T6.4 Message Bus checks if the specified topic exists. If not, an error message is
returned, and the further workflow is stopped

• The T6.4 Message Bus checks if the ZDMP is authorised to subscribe to the
specified topic by validating the provided access token. If the token is invalid, an error
message is returned, and the further workflow is stopped

• The T6.4 Message Bus subscribes the ZDMP Asset to the specified topic.
Subsequently, the ZDMP Asset receives messages published on the specified topic

 Publishing messages on topics

ZDMP Assets can publish messages on existing topics at any time via the T6.4 Message
Bus API. These messages are subsequently broadcasted to all ZDMP Assets that are

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 183 / 334

subscribed to the specified topic. Publishing messages on a specific topic triggers the
following actions (see Figure 154 - T64B003b):

• The ZDMP Asset calls the corresponding T6.4 Message Bus API function and
provides the desired topic, the corresponding publisher access token, and the
message as function arguments

• The T6.4 Message Bus checks if the specified topic exists. If not, an error message is
returned, and the further workflow is stopped

• The T6.4 Message Bus checks if the ZDMP is authorised to publish messages on the
specified topic by validating the provided access token. If the token is invalid, an error
message is returned, and the further workflow is stopped

• The T6.4 Message Bus publishes the provided message on the specified topic by
broadcasting it to all subscribed ZDMP Assets

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 184 / 334

5.7 Prediction and Optimisation Run-time (WP7)

5.7.1 Overall functional characterization & Context

 This component behaves either as a predictor or an optimiser. The
choice between "predictor" and "optimiser" is based on the
specialization that it is designed for by the component "Prediction and
Optimisation (Design Time)". It provides any component (specifically
"Quality Assurance") or zApp with predictions or optimised values. The
exact algorithm along with the numerical code is defined and bundled into this component
by the design time component ("Prediction and Optimisation (Design Time)"). The run-time
relevant parameters of the components are configurable. The source of the input to the
prediction model or optimisation algorithm is determined by the user of the component.

5.7.2 Functions / Features

• Configure: The user can send configuration commands through the user interface,
or an external component via the API of the component. The run-time relevant
parameters of the components are configurable. Some examples of configuration
are: 1- Setup of adjustable parameters of the optimiser or predictor 2- constraining
the selected inputs to the optimiser or predictor.

• Select the source: The user can select the source type. The source can be a
message bus topic or a storage location.

• Specify the input channels: Specifies the name of the input channels from the
source that determines which sensor or parameter should be used for each input of
the model.

• Perform optimisation: User/Caller sends the request for optimisation results. This
request will produce one output (one set of optimised parameters) per call. If the
component is not specialized for optimisation it will return an error code.

• Perform prediction: User/Caller sends the request for prediction results.

• Check for update: Checks for new versions of this component on Marketplace. In
case of existence of new version, it downloads it and replaces it with the previous
version. The new version primarily means a new algorithm, a new trained prediction
model, a new input pre-processing pipeline, new inputs to the numerical kernel, or in
the case of optimiser, a new objective function.

Subtask Subtask description
T7123A001
Select the source

Priority: Must

Who: Process Engineer or an external connected utilizer of the component
Where: wherever there is access to message bus or storage or the user
component can have access to this component
When: After “configure” (if caller prefers to change the default configurations)
What: Select the source of input to be whether Message bus or Storage
Why: To provide the source to the numerical kernel

Acceptance Criteria
The component responds with OK if the source of input is known to the
component.

Requirements filled RQ_0067, RQ_0070, RQ_0118

T7123A002 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 185 / 334

Specify the input
channels

Who: Process Engineer or an external connected utilizer of the component
Where: With access to message bus, storage, or external user with access
When: After “select the source”
What: Specifies the name of the sensors, parameters etc, from the source
Why: To provide the input to the numerical kernel

Acceptance Criteria
The component responds with OK if the input channels are known to the
component.

Requirements filled RQ_0067, RQ_0114

T7123A003
Perform optimisation

Priority: Must

Who: Process Engineer or an external connected utilizer of the component
Where: With access to message bus, storage, or external user with access
When: After “specify the input channels”
What: Calls the “optimiser” with necessary input.
Why: To have the optimised values and send it to the caller.

Acceptance Criteria The optimisation result is received caller

Requirements filled RQ_0054, RQ_0098

T7123A004
Perform prediction

Priority: Must

Who: Process Engineer or an external connected utilizer of the component
Where: With access to message bus, storage, or external user with access
When: After “specify the input channels”
What: Calls the “predictor” with necessary input.
Why: To generate the predicted values for various uses

Acceptance Criteria The prediction result is received by the caller

Requirements filled RQ_0087, RQ_0118

T7123A005
Configure

Priority: Must

Who: User with machine learning experience or an external user
Where: With access to message bus, storage, or external user with access
When: The first action when using this component
What: Configures the run-time relevant parameters of the component
Why: needed for the component to function properly or as desired

Acceptance Criteria
If the necessary parameters for functioning of the component are valid and
configuration is successful, the component replies with OK

Requirements filled RQ_0067, RQ_0086, RQ_0114

T7123A006
Check for updates

Priority: Medium

Who: Update manager
Where: With access to message bus, storage, or external user with access
When: Any time
What: Checks the status of updates to the component on Marketplace
Why: to have the latest version of the component (updated functionality,
algorithm, or training)

Acceptance Criteria
Receives 1- the information about the latest version on Marketplace 2- latest
version of the component

Requirements filled N/A

Figure 155: Prediction and Optimization Runtime

5.7.3 Workflows

 Initialization

The following diagram explains the initialization functions and the necessary interactions
with other components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 186 / 334

Figure 156: Configuration Sequence Diagram

Figure 157: Selecting the source Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 187 / 334

Figure 158: Specifying the input channels Sequence Diagram

 Perform optimisation

The following two diagrams show the sequence for the component specialized as
“Optimiser”.

Figure 159: Optimization

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 188 / 334

Figure 160: Optimization including the Optimizer

 Perform prediction

The following two diagrams show the sequence for the component specialized as
“Predictor”.

Figure 161: Prediction

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 189 / 334

Figure 162: Prediction including Predictor component

 Check for updates

The following diagram explains this function and the necessary interactions with other
components.

Figure 163: Check for Updates sequence diagram

5.8 Process Assurance Runtime (T7.4)

5.8.1 Overall functional characterization & Context

T7.4 support process setup by suggesting optimised process parameters assuring process
quality and making the manufacturing process self-adaptive proposing decisions on the

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 190 / 334

best actions to optimise overall process quality. This component consists of three main
modules: Quality Prediction, Quality Analysis, and Process Self-Adaptation Enabler.

The component is composed of the following modules:

•

5.8.2 Functions / Features

• Input data management: data from the analysed processes need to be used to
check the quality of the process itself. Therefore, the appropriate data needs to be
acquired from different sources and the most appropriate needs to be selected for
the three main objectives of this architecture: analyse the quality of the process,
make predictions on the quality and obtain values to optimise the processes.

• Prediction/optimisation requirements specification: the user can select
requirements for the prediction process, eg kind of models to be used, the
parameters of the models, the origin of the data, the data to be used and the amount
of data used for training, among others.

• Achievement of results: To show the predictions / classifications / optimisation
results required by the user based on the selected data and the specified
requirements

• Visualisation of the results: Show the results (analysis, prediction, and
optimisation) based on the selection of the signals/indicators desired by the user

• Models/results management: Loading and saving the models before or after the
training process to be reused in another session

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
T74A001
Select data for quality
prediction

Priority: Must

Who: Process Engineer
What: The user selects which data he wants to use for quality prediction
Where: Anywhere
When: During manufacturing
Why: To specify which data is the desired one from all the available data

Acceptance Criteria
Data sources that have been previously configured in the platform are shown
and selected

Requirements filled N/A

T74A002
Select data for quality
analysis

Priority: Must

Who: Process Engineer
What: The user selects which data wants to use for quality analysis
Where: Anywhere
When: During manufacturing
Why: To specify which data is the desired one from all the available data

Acceptance Criteria
Data sources that have been previously configured in the platform are shown
and selected

Requirements filled N/A

T74A003
Select data for quality
process optimisation

Priority: Must

Who: Process Engineer
What: The user selects which data wants to use for process quality optimisation
Where: Anywhere
When: During manufacturing

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 191 / 334

Why: To specify which data is the desired one from all the available data

Acceptance Criteria
Data sources that have been previously configured in the platform are shown
and selected

Requirements filled N/A

T74A004
Visualise data for
quality prediction

Priority: Must

Who: Process Engineer
What: The user selects the kind of graphs to be shown in the interface
Where: Anywhere
When: During manufacturing
Why: To get information on the data to be used in the prediction

Acceptance Criteria
Time series, data in other domains (eg frequency) and/or parameters of the
process are shown to the user based on the selection of the data sources in
T74A001

Requirements filled N/A

T74A005
Visualise data for
quality analysis

Priority: Must

Who: Process Engineer
What: The user selects the kind of graphs to be shown in the interface
Where: Anywhere
When: During manufacturing
Why: To get information on the data to be used in the classification

Acceptance Criteria
Time series, data in other domains (eg frequency) and/or parameters of the
process are shown to the user based on the selection of the data sources in
T74A002

Requirements filled N/A

T74A006
Visualise data for
process quality
optimisation

Priority: Must

Who: Process Engineer
What: The user selects the kind of graphs to be shown in the interface
Where: Anywhere
When: During manufacturing
Why: To get information on the data to be used in the optimisation

Acceptance Criteria
Time series, data in other domains (eg frequency) and/or parameters of the
process are shown to the user based on the selection of the data sources in
T74A003

Requirements filled N/A

T74A007
Set Algorithm and its
properties

Priority: Must

Who: Process Engineer
What: The user selects the optimisation algorithm from an available set of
options
Where: Anywhere
When: During manufacturing
Why: To specify the algorithm and model to use

Acceptance Criteria
With the kind of model, time performance, and accuracy provided, the user can
have the necessary data to launch an optimisation/analysis/optimisation

Requirements filled N/A

T74A008
Predict

Priority: Must

Who: Process Engineer
What: The user requests a prediction on the quality of the process
Where: Anywhere
When: During manufacturing
Why: To get information on the future quality of the process

Acceptance Criteria
The user obtains a prediction based on the selected data, algorithms, and
properties

Requirements filled N/A

T74A009 Priority: Should

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 192 / 334

Classify Who: Process Engineer
What: The user requests a classification on the quality of the process
Where: Anywhere
When: During manufacturing
Why: To analyse the current quality of the process

Acceptance Criteria
The user obtains a classification based on the selected data, algorithms, and
properties

Requirements filled N/A

T74A010
Optimise

Priority: Must

Who: Process Engineer
What: The user requests an optimisation of the parameters of the process
Where: Anywhere
When: During manufacturing Why: To optimise the process itself

Acceptance Criteria
The user obtains an optimisation based on the selected data, algorithms, and
properties

Requirements filled N/A

T74A011
Save model

Priority: Must

Who: Process Engineer
What: The user saves the created model
Where: Anywhere
When: at any moment
Why: To save a model instance with the provided configuration

Acceptance Criteria
If successful, the user is prompted with a confirmation message. If not, the user
is prompted with an error message

Requirements filled N/A

T74A012
Load model

Priority: Must

Who: Process Engineer
What: The user loads the created model
Where: Anywhere
When: at any moment
Why: To configure the data sources for the model

Acceptance Criteria
If successful, the user is prompted with a confirmation message. If not, the user
is prompted with an error message

Requirements filled N/A

T74A013
Show quality
prediction results

Priority: Must

Who: Process Engineer
What: The user obtains the results of the prediction results
Where: Anywhere
When: at any moment
Why: To visualise the prediction results

Acceptance Criteria The user can select the graphs/indicators from a set of pre-defined options

Requirements filled RQ_0088, RQ_0123, RQ_0124, RQ_0269, RQ_0270, RQ_0274

T74A014
Show quality analysis
results

Priority: Must

Who: Process Engineer
What: The user obtains the results of the analysis results
Where: Anywhere
When: at any moment
Why: To visualise the analysis results

Acceptance Criteria The user can select the graphs/indicators from a set of pre-defined options

Requirements filled RQ_0107, RQ_0263, RQ_0272

T74A015
Show process quality
optimisation results

Priority: Must

Who: Process Engineer
What: The user obtains the results of the optimisation results
Where: Anywhere
When: at any moment
Why: To visualise the optimisation results

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 193 / 334

Acceptance Criteria The user can select the graphs/indicators from a set of pre-defined options

Requirements filled RQ_0050, RQ_0102

Figure 164: Process Assurance Runtime

5.8.3 Workflows

 Input data management

This workflow obtains data to be used in the Quality Prediction, Quality Analysis and
Process Self-Adaption Enabler modules based on the inputs provided by the user. The
main steps are:

• Selection of the data to be loaded

• Loading of the data

Figure 165. Scheme of subtask T74A001 (input data management)

Figure 166. Scheme of subtask T74A002 (input data management)

Figure 167. Scheme of subtask T74A003 (input data management)

 Visualisation

This workflow provides visualisations of the input data and the
prediction/classification/optimisation results. The main steps are:

• Selection of the required information (data or results)

• Visualisation of the information (data or results)

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 194 / 334

Figure 168: Scheme of subtask T74A004 (visualisation)

Figure 169: Scheme of subtask T74A005 (visualisation)

Figure 170: Scheme of subtask T74A006 (visualisation)

Figure 171: Scheme of subtask T74A007 (visualisation)

Figure 172: Scheme of subtask T74A008 (visualisation)

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 195 / 334

Figure 173: Scheme of subtask T74A009 (visualisation)

 Prediction/optimisation requirements specification

This workflow sets the details on the prediction/classification/optimisation models to be
defined (kind of models, parameters, objectives) based on the inputs provided by the user.
The main steps are:

• Definition of the details

Figure 174: Scheme of subtask T74A010 (prediction/optimisation requirements
specification)

 Achievement of results

This workflow obtains the prediction/classification/optimisation results based on the data
and the requirements. The main steps are:

• Creation of a new instance of a prediction/optimisation model

• Calculation of the prediction/classification/optimisation

• Extraction of the results

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 196 / 334

Figure 175: Scheme of subtask T74A011 (achievement of results)

Figure 176: Scheme of subtask T74A012 (achievement of results)

Figure 177: Scheme of subtask T74A013 (achievement of results)

 Models/results management

This workflow saves and loads the models and the results. The main steps are:

• Selection of the models/results to be saved

• Saving of the models/results

• Loading of the models/results

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 197 / 334

Figure 178: Scheme of subtask T74A014 (model/results management)

Figure 179: Scheme of subtask T74A015 (model/results management)

5.9 Models Deployment Manager (T8.2, T8.4)

Part of Product Assurance Run-time.

5.9.1 Overall functional characterization & Context

The main goal of this component is to create containers of product quality models
or supervision models at run-time. A model is created by three main components: a
data processor, a trainer module (Product Quality or Supervision) and a prediction
module. In a production environment of the ZDMP platform, each zApps has its
specific analytics requirements. This component supports the creation of an
analytical model for supporting their specific purposes, selecting the best ML
algorithm and data processing configuration to fulfil the task. This component orchestrates
the creation of the three modules for each analytical model and manages them a whole
runtime instance. Both the data processor, the training module and a prediction module
are deployed inside a container, then defining a model container as a single functional
unit. So, this component communicates with the Application Services component for
supporting the resources assignment, initial configuration, and horizontal scalability for
container deployment. This communication for deploying the containers is supported via
the Supervision and Product Quality model API.

5.9.2 Functions / Features

• Data Processor instance creation: Create a new instance of a data processor to
transform the data required for the corresponding trainer

• Product Quality Model trainer creation: Create new trainer for generating a
Product Quality model to generate predictions regarding quality indicators. The

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 198 / 334

trained model runs in an isolated container and is initialized using a configuration file,
to define properties such as the pushing data rate to a predictive model

• Supervision Model trainer creation: this component resembles the previous one,
creating a new instance of a supervision model trainer

• Container deployment: deploy instances of the previous modules as docker
containers using the T6.4/6.5 Application Runtime

• Data processor – Models interoperability: connect/route the processed data
coming from an instance of the data processor to the trainer and prediction module

• Historical model instances: this component logs the different models requested by
the zApps and their status (running, stopped, etc.)

These functions can be grouped to the following features, which must be implemented:

Subtask Subtask description
T82A001
Processing Data
Instance Generation

Priority: Must

Who: Models Deployment Manager
Where: In a container service provider
When: At design time when a model creation is started from a zApp
What: Creates an instance for data processing
Why: To generate the necessary data to feed the Product Quality and
Supervision Trainers

Acceptance Criteria The data processor instance is available

Requirements filled N/A

T82A002
Create Product
Quality Model

Priority: Must

Who: zApp
Where: In a container service provider
When: At design time when a Product Quality model creation is requested by a
zApp
What: Create an instance of product quality model trainer in run-time
Why: To start the process of training the model as data arrives

Acceptance Criteria The Product Quality trainer is ready to receive data for training

Requirements filled N/A

T82A003
Create Supervision
Model

Priority: Must

Who: zApp
Where: In a container service provider
When: At design time when a Product Quality model creation is requested by a
zApp
What: Create an instance of supervision model trainer in run-time
Why: To start the process of training the model as data arrives

Acceptance Criteria The Supervision trainer is ready to receive data for training

Requirements filled N/A

T82A004
Model Container
Deployment

Priority: Must

Who: Models Deployment Manager
Where: In a container service provider
When: At runtime when a model creation is requested
What: To deploy instances of the data processor and a Product Quality Model or
a Supervision model as docker containers using the Application Runtime
Why: Models must be executed at runtime

Acceptance Criteria The Docker container is started and running

Requirements filled N/A

T82A005
Establish Data
Processing Link

Priority: Must

Who: Models Deployment Manager
Where: Inside a model container
When: At runtime when a model creation is requested

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 199 / 334

What: To connect/route the data processor to the specific trainer and prediction
modules
Why: To send the required processed data to the trainer and prediction modules
to be used

Acceptance Criteria Data is received by both trainer and prediction modules

Requirements filled N/A

T82A006
Store Model Instances

Priority: Must

Who: Models Deployment Manager
Where: In an external repository (AI-Designer)
When: At runtime when a new model is generated by the training modules
What: this component logs the different models created by the zApps and their
status (running, stopped, etc)
Why: Store model instances previously created and made them available to
other zApps

Acceptance Criteria The model instance is available in the AI-Analytics Designer

Requirements filled N/A

Figure 180: Models Deployment Manager Functions

5.9.3 Workflows

 Create Product Quality or Supervision Model

This workflow represents both tasks as the sequence of actions are similar.

Figure 181: Create Product Quality / Supervision Model

 Store Model Instances

Suggested sequence:

• Supervision Trainer or Quality Trainer send an updated model to model deployment
manager

• Deployment manager redirects the model to the specific API (Product Quality or
Supervision)

• Both API connect with the AI-Analytics designer that will function as repository of the
models

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 200 / 334

5.10 Data Processor (T8.2, T8.4)

Part of Product Assurance Run-time.

5.10.1 Overall functional characterization & Context

This component receives the relevant data related with the manufacturing
process of a product and processes the data according to a set of
predefined and configurable rules. Usually data gathered from an industrial
process cannot be used “as-is” for supporting analytical tasks. For instance,
data frequency from sensors could range from seconds to days. Using this module, data
could be temporally aligned to the same frequency selecting the most suitable aggregation
(sum, average, etc) for each sensor. Additionally, data should be sent to the models in
specific time window sizes, eg only the values received in the last minute, hour, etc.
Therefore, this component adapts the data to be used in the next step of the data analysis
pipeline.

To support scalability, this component expects a publish/subscribe broker to get the data in
real-time. Following this architectural approach, the Data Processor is subscribed to the
topics with the required data, applies a series of rule transformations (temporal alignment,
selection, etc.) and then sends a sliding window of the data to the specific models.

5.10.2 Functions / Features

• Data subscription: get the information from the publish/subscribe broker (from the
T6.4/6.5 Message Bus) on a specific scheduling (every minute, second etc). The
component expects that the data follows a predefined schema.

• Authentication for data subscription: Request if the data processor is authorized
to get the product data currently available. This a security mechanism to ensure
privacy.

• Processing rules: the component provides a set of predefined rules for processing
the data. Rules are foreseen for supporting temporal alignment if product data is
received following different frequencies, ie, applying downsampling or upsampling
functions.

• Processing rules configuration: the previously defined rules are configurable, for
instance defining the aggregation frequency (every minute, hour, etc.), the
aggregation operation (sum, min, max, average) and the size of the window (send
the last 10 aggregations of data). Configuration is received on model instance
creation.

• Data Windows publishing: the component periodically sends the processed data to
the rest of the related components.

• Historical data storage: after the processing step data is stored in a database for
further analysis.

Subtask Subtask description

T82B001
Create Data
Subscription

Priority: Must

Who: zApp
Where: In a model container
When: Design time when the data processor is created for supporting a model training
What: Receive product information from the Message Bus on a continuous basis
Why: To send the data to the prediction and trainer modules

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 201 / 334

Acceptance Criteria It should be logged the amount of data received (number of messages)

Requirements filled N/A

T82B002
Authentication for
data subscription

Priority: Should

Who: Data Processor
Where: Security Run-time
When: At design time when the data processor is created to support a model training
What: Product data could be confidential, requiring authenticating the data user
Why: To ensure security and privacy of the product data

Acceptance Criteria Data cannot be accessible if the authorization is not granted
Only product data authorized for the specific login should be accessible

Requirements filled N/A

T82B003
Processing Rules
Definition

Priority: Must

Who: zApp
Where: zApp User Interface
When: at design time from the configuration established by a zApp
What: Define a processing rule for a variable of the product data
Why: Data could be received following a different format or temporal alignment than
the expected by the models

Acceptance Criteria Processing rules must be compliant with a previously defined syntax

Requirements filled RQ_0028

T82B004
Data Processing

Priority: Must

Who: Data Processor
Where: In a model container
When: At runtime when a new set of data is received
What: Processing rules are applied to the received data
Why: To transform data and aggregate them according to a specific temporal window

Acceptance Criteria Rules must be applied if the variable is received in the subset of data

Requirements filled RQ_0028

T82B005
Processed Data
Storage

Priority: Must

Who: Data Processor
Where: In predictions repository
When: At runtime after processing the product data
What: Processed data according to the defined rules is stored
Why: Processed data must be available for generating an historical set or for
performing further analysis

Acceptance Criteria Data must be stored and available for retrieval as soon as it is processed

Requirements filled N/A

T82B006
Processed Data
Publishing

Priority: Must

Who: Data Processor
Where: In a model container
When: At runtime after processing the product data
What: To send the processed data to the subscribed modules
Why: Different submodules, mainly the trainer and predictor, used the same data

Acceptance Criteria Submodules must receive the data as it is published
Data publishing ratio must be logged (timestamp and number of items)

Requirements filled RQ_0028

Figure 182: Data Processor Functions

5.10.3 Workflows

 Data Processing

The following sequence diagram describes the data processing workflow.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 202 / 334

Figure 183: Data Processing Functions Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 203 / 334

5.11 Product Quality Model Trainer (T8.2, T8.4)

Part of Product Assurance Run-time.

5.11.1 Overall functional characterization & Context

This module implements the training for creating predictive models that
support T8.2 goals. The available supervised models are meant to correlate
production data with related product quality indicators. It is the Data Processor
which prepares complete and consistent training datasets to be processed
into this module, including values/labels for the product quality indicators. Once the training
is terminated with the required accuracy, the trained model can be used inside the Product
Quality Predictor to start performing predictions about quality indicators. Loaded models
may be continuously trained inside this module to take advantage of larger datasets
including more recent data, so to improve prediction accuracy.

5.11.2 Functions / Features

• Load training parameters: the module receives an initial configuration file
describing different properties to be used to train the model, like data format,
accuracy thresholds, hyper-parameters configuration.

• Initialize model: this module should be able to load a previous ML model or train a
new one according to the previous parameters.

• Load training data: the module receives training datasets previously processed by
the Data Processor, to start training the model

• Continuous training: the module generates a new version of the model every time a
new batch of data is received: training model KPIs are exposed during training to
allow process monitoring by the data analyst. It also notifies when the new trained
model is ready to be deployed

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
T82C001
Load Model

Priority: Must

Who: Product Quality Trainer
Where: Anywhere
When: At the creation of the module instance at configuration time of zApp
What: Load from Model Deployment Manager the model selected by the end
user
Why: To perform model training once processed data are available

Acceptance Criteria The correct model is loaded

Requirements filled N/A

T82C002
Load Training
Parameters

Priority: Must

Who: Product Quality Trainer
Where: Anywhere
When: At the creation of the module instance
What: Configure the training according to the specific configuration passed by
the Model Deployment Manager
Why: To perform a model training once processed data are available

Acceptance Criteria The configuration files follow the expected schema

Requirements filled NA

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 204 / 334

T82C003
Load Training Dataset

Priority: Must

Who: Product Quality Trainer
Where: Anywhere
When: Data Processor triggers a new training once a new batch of data is ready
and pre-processed
What: Loads the processed training dataset passed through by the Data
Processor
Why: To perform model re-training once new processed data are available

Acceptance Criteria All data items conform the expected format

Requirements filled N/A

T82C004
Train Model with
Dataset

Priority: Must

Who: Product Quality Trainer
Where: Anywhere
When: Data processor supplies new labelled dataset for training
What: Start training with a dataset supplied by Data Processor
Why: To improve prediction capabilities using an extended or more recent
dataset

Acceptance Criteria As soon as the new trained model is available, it should be notified

Requirements filled N/A

T82C005
Training KPI status

Priority: Must

Who: Product Quality Trainer
Where: Anywhere
When: An external module requests information about these KPIs
What: Training status (running, target reached/unreached) and other meaningful
training KPIs are available to other modules
Why: To let data analyst monitor the performance and accuracy of the training
process

Acceptance Criteria The most recent values of the KPIs are available when requested

Requirements filled N/A

T82C006
Send Trained Model

Priority: Must

Who: Product Quality Trainer
Where: Anywhere
When: Current error indicator, ie requested accuracy, is improved/reached
respect actual quality predictor model after a model training on new dataset
What: Send freshly trained model to Quality Predictor
Why: To let Quality Predictor update the model under execution and save it in
the storage

Acceptance Criteria The Quality Predictor correctly runs the new updated model

Requirements filled N/A

T82C007
Stop/Start Training

Priority: Must

Who: Product Quality Trainer
Where: Anywhere
When: Data analyst from a zApp or an arbitrating external component sends
stop/start command
What: Stop/Start training the model
Why: To let Data Analyst or an arbitrating external component stop, reconfigure
and restart training, for example when a new rule to start/stop training task is to
be applied with respect to ones defined on Product quality trainer module

Acceptance Criteria The training process is stopped/started as expected

Requirements filled N/A

Figure 184: Quality Model Trainer Functions

5.11.3 Workflows

The remaining subtasks (T82C003 and T82C007) are representable are straightforward
request response exchanges between the Product Quality Trainer module and either the

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 205 / 334

Data Processor (T82C003), Module Deployment Manager (T82C005/7) and the Quality
Predictor (T82C006), the more complex Load Model and Load Training Parameter
workflows are shown below.

 Load Model

Figure 185: Load Model Sequence Diagram

 Load Training Parameters

Figure 186: Load Training Parameters

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 206 / 334

5.12 Predictions Repository (T8.2, T8.4)

Part of Product Assurance Run-time.

5.12.1 Overall functional characterization & Context

This module stores locally the predictions generated by the Quality Predictor
for historical purposes and for checking the accuracy achieved by the model.

5.12.2 Functions / Features

• Predictions storage: the component supports the storage of the prediction
generated by the Quality Model Predictor

• Query predictions: Retrieve the predictions generated for a set of variables in a
specific period

Subtask Subtask description
T82D001
Predictions Storage

Priority: Must

Who: Product Quality Predictor
Where: Local Storage
When: At runtime as new prediction or set of predictions are generated
What: This repository stores the predictions generated by the Quality Predictor
Why: To retrieve historical information in a specific time range and compare the
accuracy among

Acceptance Criteria The predictions repository should store a set of predictions with their specific
timestamp and they must be available using the Predictions Query feature

Requirements filled N/A

T82D002
Predictions query

Priority: Must

Who: zApps or Quality Model Predictor
Where: From external component (zApp or zAsset) and in the model container
When: at runtime when a zApp or the predictor request the information to fulfil its
functionality
What: The Predictions Repository retrieves the predictions requested in a
specific period
Why: To get information regarding the predictions generated

Acceptance Criteria Given a period the repository should return all the predictions generated in such
period for a specific quality variable.

Requirements filled N/A

Figure 187: Predictions Repository Functions

5.12.3 Workflows

Both subtasks are simple request response exchanges between the Product Quality
Predictor module and this module, therefore no diagrams are created for simplicity.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 207 / 334

5.13 Quality Predictor (T8.2, T8.4)

Part of Product Assurance Run-time.

5.13.1 Overall functional characterization & Context

This component executes a ML model to generate a predictive trend of the
quality of the received manufacturing data. Quality is calculated from one or
more objective variables from the received data. This component stores the
generated prediction, using the prediction repository, to compare the actual
values of the product data with the predicted values retrieved form the model. An
additional feature of this module is the optimisation of a specific objective variable
according to the manufacturing process parameters.

5.13.2 Functions / Features

• Model execution: as new processed data is received by this module, predictions are
generated and sent to rest of components using an API. For each objective or target
variable previously selected in the data processing a, an underlying predictive model
provides the values expected for the next period (the next five minutes, the next
hours, etc)

• Optimization: Once a model is trained users can search for process conditions that
maximize (or minimizes, depending on the type of optimization) one or more quality
variables

• Model updating: New versions of the resulting model are continuously deployed to
provide the requested prediction

• Predictions storage: Send the predictions to the prediction storage component for
historical analyses

Subtask Subtask description
T82E001
Execute trained
predictor

Priority: Must

Who: Product Assurance Runtime
Where: In a model container
When: At runtime after the data processor was started and the training module
has generated a model
What: A previous trained model using the Product Quality Model trainer is
executed in runtime with a subset of the product data
Why: To get predictions regarding product quality as processed data is received
form the data processor

Acceptance Criteria Prediction endpoint of the production quality model accepts requests

Requirements filled RQ_0045, RQ_0049, RQ_0051, RQ_0103

T82E002
Data batch
aggregation

Priority: Must

Who: Product Assurance Runtime
Where: In a model container
When: At runtime after the expected amount of processed data is received
What: To send the processed data to the trainer module using a specific period
(every minute, every hour, etc) or an amount of data (for instance, the last 100
items received)
Why: To get predictions with small subsets of the data and, then, reducing the
required time to execute a model

Acceptance Criteria The generation of batches is logged

Requirements filled RQ_0045, RQ_0049, RQ_0051, RQ_0103

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 208 / 334

T82E003
Prediction publishing
configuration

Priority: Must

Who: zApp or component via Product Quality Model API
Where: In a model container
When: At runtime as a response of the model is received
What: Predictions are published with a predefined time frequency (every 5
seconds, for instance)
Why: To provide predictions to and external component in a suitable frequency
to visualize the data

Acceptance Criteria Check that predictions are published to the Supervision Model API in the
expected frequency

Requirements filled RQ_0045, RQ_0049, RQ_0051, RQ_0103

T82E004
Predictions broadcast

Priority: Must

Who: Product Quality Model API
Where: Anywhere
When: At runtime when a set of predictions is received
What: Predictions must be published and made available to rest of the
components as soon as they are generated
Why: zApps and components will use the predictions to gain insights regarding
the quality of the manufacturing data

Acceptance Criteria Any component or zApp subscribed to the Product Quality Model API must
receive the generated predictions.

Requirements filled RQ_0045, RQ_0049, RQ_0051, RQ_0103

T82E005
Model update

Priority: Must

Who: Product Assurance Runtime, Product Quality Model Trainer
Where: In a model container
When: At runtime when a condition for updating is met
What: Use a new product quality model because of a retraining
Why: To guarantee the accuracy of the generated predictions, models should be
updated considering the most recent data

Acceptance Criteria Model should be updated in real time
The predictions generation process must not be stopped until the new model is
working

Requirements filled RQ_0045, RQ_0049, RQ_0051, RQ_0103

T82E007
Predictions query

Priority: Must

Who: Quality Predictor, Product Quality Model API
Where: In a model container
When: At runtime when an external client or the Quality Predictor request the
data
What: The Quality Predictor or external modules will query the predictions
repository in an specific time-range for a specific quality variable
Why: To get information regarding the predictions generated

Acceptance Criteria Given a period the repository should return all the predictions generated in such
period for a specific quality variable
A valid range of start data – end date must be provided

Requirements filled N/A

T82E008
Optimization Launch

Priority: Should

Who: zApp, Product Quality Model API
Where: zApp configuration interface
When: at design time in a user interface that configures the optimization
(variables, ranges etc)
What: The module returns the set of process variables values that optimize the
outcome of a target variable
Why: To maximize or minimize the value of a selected target variable

Acceptance Criteria The user should select at least one target variable for optimization
The product data must have at least one process variable or a variable different
of the target one

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 209 / 334

Requirements filled RQ_0045, RQ_0049, RQ_0051, RQ_0103

T82E009
Optimization

Priority: Should

Who: Quality Predictor
Where: In a model container
When: At runtime when an optimization is requested by an external app or
component
What: The Quality Predictor executes several times the trained model with
different parameters following an algorithm
Why: To get the optimal set of values for each of the process variables involved

Acceptance Criteria Simultaneous call to the trained model must be possible
If a solution is not found, it should be notified

Requirements filled RQ_0045, RQ_0049, RQ_0051, RQ_0103

Figure 188: Quality Predictor Functions

5.13.3 Workflows

 Execute trained ML model

The following diagram explains this function and the necessary interactions with other
components.

Figure 189: Execute trained machine learning model

 Predictions broadcast

The following diagram explains this function and the necessary interactions with other
components.

Figure 190: Predictions Broadcast

 Model update

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 210 / 334

Figure 191: Model Update Sequence Diagram

 Predictions query

The following diagram explains this function and the necessary interactions with other
components.

Figure 192: Predictions Query Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 211 / 334

5.14 Supervision Model Trainer (T8.2, T8.4)

Part of Product Assurance Run-time.

5.14.1 Overall functional characterization & Context

This module implements the training and for creating predictive models that
support T8.4 goals. These models are based on sound machine learning
libraries with the aim of detecting anomalies of production data received at
run time. The common approach for building an ML model is to first gather a
huge amount of historical data and perform an offline training. However, this approach does
not fit for a novel manufacturing process due to the lack of historical data. To address this
challenge, this module implements a continuous training of the model as data is received.
First, the model is trained with a small subset of the data, and incrementally, the model is
improved and updated as new data is received. Anomaly detection is expected to improve
over time as more data has been used for training (fitting) the model. This approach also
benefits of the fact that, usually, most recent data is more relevant to detect anomalous
behaviour.

5.14.2 Functions / Features

• Load starting model: the module should be able to load the ML model indicated by
the end user

• Load training parameters: the module receives an initial configuration file
describing different properties to be used to train the model, like data format,
accuracy thresholds, hyper-parameters configuration

• Load training data: the module receives training datasets previously processed by
the Data Processor, to start training the model

• Continuous training: the module generates a new version of the model every time a
new batch of data is received: training model KPIs are exposed during training to
allow process monitoring by the data analyst. It also notifies when the new trained
model is ready to be deployed

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
T82F001
Load Model

Priority: Must

Who: Supervision Model Trainer
Where: Anywhere
When: At the creation of the module instance
What: Load from Model Deployment Manager the model selected by the end
user at configuration time of zApp
Why: To perform model training once processed data are available

Acceptance Criteria The correct model is loaded

Requirements filled N/A

T82F002
Load Training
Parameters

Priority: Must

Who: Supervision Model Trainer
Where: Anywhere
When: At the creation of the module instance
What: Configure the training according to the specific configuration passed by
the Model Deployment Manager

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 212 / 334

Why: To perform a model training once processed data are available

Acceptance Criteria The configuration files follow the expected schema

Requirements filled N/A

T82F003
Load Training Dataset

Priority: Must

Who: Supervision Model Trainer
Where: Anywhere
When: Data Processor triggers a new training once a new batch of data is ready
and pre-processed
What: Loads the processed training dataset passed through by the Data
Processor
Why: To perform model re-training once new processed data are available

Acceptance Criteria All data items conform the expected format

Requirements filled N/A

T82F004
Train Model with
Dataset

Priority: Must

Who: Supervision Model Trainer
Where: Anywhere
When: Data processor supplies new labelled dataset for training
What: Start training with a dataset supplied by Data Processor
Why: To improve anomaly detection capabilities using an extended or more
recent dataset

Acceptance Criteria As soon as the new trained model is available, it should be notified

Requirements filled N/A

T82F005
Training KPI status

Priority: Must

Who: Supervision Model Trainer
Where: Anywhere
When: An external module requests information about these KPIs
What: Training status (running, target reached/unreached) and other meaningful
training KPIs are available to other modules
Why: To let data analyst monitor the performance and accuracy of the training
process

Acceptance Criteria The most recent values of the KPIs are available when requested

Requirements filled N/A

T82F006
Send Trained Model

Priority: Must

Who: Supervision Model Trainer
Where: Anywhere
When: Current error indicator, ie requested accuracy, is improved/reached
respect actual quality predictor model after a model training on new dataset
What: Send freshly trained model to Quality Predictor
Why: To let Quality Predictor update the model under execution and save it in
the storage

Acceptance Criteria The Quality Predictor correctly runs the new updated model

Requirements filled N/A

T82F007
Stop/Start Training

Priority: Must

Who: Supervision Model Trainer
Where: Anywhere
When: Data analyst from a zApp or an arbitrating external component sends
stop/start command
What: Stop/Start training the model
Why: To let Data Analyst or an arbitrating external component stop, reconfigure
and restart training, for example when a new rule to start/stop training task is to
be applied with respect to ones defined on Supervision Model Trainer module

Acceptance Criteria The training process is stopped/started as expected

Requirements filled N/A

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 213 / 334

Figure 193: Supervision Model Trainer Functions

5.14.3 Workflows

Simple request response exchange workflows for functions T82F003 and T82F007 have
been left out for simplicity between the Supervision Model Trainer module and Data
Processor (T82F003), Module Deployment Manager (T8FC005/7) and the Anomaly
Detector (T82F006).

 Load Model

The following diagram explains this function and the necessary interactions with other
components.

Figure 194: Load Model

 Load Training Parameters

The following diagram explains this function and the necessary interactions with other
components.

Figure 195: Load Training Parameters Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 214 / 334

5.15 Anomaly Detector (T8.2, T8.4)

Part of Product Assurance Run-time. This component deploys and executes
a model to raise alerts when anomalies are detected. Such anomalies are
published to be notified by an external app in real time to the user, when one
or more statistical indicator computed by the underling ML model are above
or below an alert threshold (aka control limit). Thresholds for each variable
are also automatically calculated a model created using the Supervision
Model trainer. Then, an alert notification will be logged and reported using
the Monitoring and Alerting component. This module also records which
specific variables are contributing to the incorrect behaviour, to help explaining the
anomaly.

5.15.1 Functions / Features

• Anomaly model specification: the detector receives a configuration regarding the
variables to monitor from the set of product data. These variables are also
considered by the Supervision Model trainer

• Model execution: as new processed data is received, the model checks for any
potential anomaly and the variables involved (also with abnormal values)

• Anomaly subscription: External components or zApps subscribe to receive the
anomalies as are generated by the continuous execution of the model

• Alerts notification: when a potential anomaly is detected by the model, the anomaly
is sent and logged. This notification is sent as an alert to other components using the
Message bus queues

Subtask Subtask description
T82G001
Execute trained
anomaly detector

Priority: Must

Who: Product Assurance Runtime
Where: In a model container
When: At runtime as new product data is received
What: A previous trained anomaly detector model using the Supervision Model
trainer is executed in runtime with the received product data
Why: To get anomalies, which include variable abnormal values, error statistics,
possible alerts, and variables responsible of such alerts.

Acceptance Criteria Anomalies are published to the Supervision Model API as soon as they are
generated

Requirements filled RQ_0013, RQ_0021, RQ_0028, RQ_0034, RQ_0072, RQ_0073

T82G002
Anomaly notification

Priority: Must

Who: zApp or component via Supervision Model API
Where: In a user interface
When: At runtime as new anomaly is published
What: Detected anomalies in specific variable must be made available to the rest
of the components as soon as they are generated
Why: zApps and ZDMP components will use the detected anomalies to react
accordingly and present notifications to end users

Acceptance Criteria Every subscribed component must receive the anomaly notification in the next
minute
If the components were not subscribed, the last anomaly notification is retrieved

Requirements filled RQ_0013, RQ_0021, RQ_0028, RQ_0034, RQ_0072, RQ_0073

T82G003 Priority: Should

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 215 / 334

Anomaly detector
update

Who: Product Assurance Runtime, Supervision Model Trainer
Where: In a model container
When: At runtime if the anomaly detector model is updated
What: An anomaly detector model is could be retrained by the Supervision
Model Trainer to improve accuracy
Why: To guarantee the accuracy of the detected anomalies, the new model will
replace the previous one

Acceptance Criteria Model should be updated in real time without stopping the anomaly generation
task until the new model is working

Requirements filled RQ_0013, RQ_0021, RQ_0028, RQ_0034, RQ_0072, RQ_0073

T82G004
Anomaly thresholds
reporting

Priority: Must

Who: Anomaly Detector
Where: In a model container
When: At runtime when the anomaly detector is trained
What: For each variable, an upper – bottom normal condition threshold is
automatically calculated by the trainer
Why: These calculated thresholds are updated in real-time and are useful to
report what is considered and anomaly

Acceptance Criteria All variables considered should have a threshold

Requirements filled RQ_0013, RQ_0021, RQ_0028, RQ_0034, RQ_0072, RQ_0073

T82G005
Anomaly contributing
variables

Priority: Must

Who: Anomaly Detector, Supervision Model API
Where: In a user interface
When: At runtime when a new anomaly is reported
What: When an anomaly is detected it should be explained which variables are
generating such anomaly
Why: To report which specific variables must be considered to solve the
detected anomaly

Acceptance Criteria For a given anomaly, it must be calculated the contribution percentage of every
variable involved in the anomaly detector.

Requirements filled RQ_0013, RQ_0021, RQ_0028, RQ_0034, RQ_0072, RQ_0073

T82G006
Recent anomalies

Priority: Should

Who: Anomaly Detector, Supervision Model API
Where: In a model container
When: At runtime when the anomalies are requested by an external component
What: A historical of set of the most recent anomalies
Why: To receive information of the previous generated anomalies (for instance, if
a component was not previously subscribed)

Acceptance Criteria The last ten generated anomalies must be available

Requirements filled N/A

Figure 196: Anomaly Detector Functions

5.15.2 Workflows

 Execute trained ML model

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 216 / 334

Figure 197: Execute Trained Machine Learning Model Sequence Diagram

 Alert subscription

The following diagram explains this function and the necessary interactions with other
components.

Figure 198: Alert Subscription Sequence Diagram

 Model updating

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 217 / 334

Figure 199: Model Updating Sequence Diagram

 Monitoring results subscription

The following diagram explains this function and the necessary interactions with other
components.

Figure 200: Monitoring Results Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 218 / 334

6 Edge Tier: Run-time

The Edge Tier is a tier for components which need to be located close to the source of
data. These components need to be able to integrate with the data quickly due to
performance (eg to avoid transferring large amount of image files over the network) or
technical reasons (eg image processing that requires a dedicated GPU). They are linked
by the T5.5 Distributed Computing Component. It includes aspects such as the T5.1 Data
Acquisition and T8.3 Non-Destructive Inspection. Some of these components may be
optionally run on the Platform Tier when performance or technical issues do not require
them to be run on the Edge Tier.

Figure 201: Edge Tier Runtime Components

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 219 / 334

6.1 Data Acquisition and IIoT (T5.1)

6.1.1 Overall functional characterization & Context

The Data Acquisition component implements a framework for the
handling of data from IoT sensors and other sources. It allows the
connection to various kinds of data sources: IIoT physical devices such
as industrial automation devices (PLCs, smart sensors, RFID readers,
etc), ERP systems, SCADA/MES systems/data, and existing
databases. It provides a collection of functionalities among which functionalities to collect
data from and to send commands to such systems.

6.1.2 Functions / Features

Data Acquisition component provides a set of functionalities that could be grouped on the
following features:

• Data Source Adapters management: where the installed adapters are shown. The
Data Source Adapters are software classes that support the communication of
specific data sources through specific open or closed protocols.

• Data Source Management: where data sources are registered as sources of
information and/or receivers of actuation commands to interact with the physical
world. The registration of data sources implies the specification of parameters and
the usage of installed adapters.

• Data Source data reading: where a range of functionality is provided regarding the
different mechanisms to read from the data sources (ie their sensors). The Data
Acquisition component can implement synchronous and asynchronous read methods
through its Data Source Adapter subcomponent.

• Data Source controlling: A set of data sources will provide actuators. In this case,
and whenever the data source’s associated adapter supports its control, zApps will
be able to act on the data sources through the Data Acquisition component.

The functions can be grouped to the following features:

Subtask Subtask description

T51A001
Receive
asynchronous data
from Data Source

Priority: Must

Who: Data Acquisition Component
When / Where: Runtime of the application depending on event’s scheduling in
the configuration
What: Receive data pushed by a data source based on an event configured on it
Why: Provide data to subscribed zApps or other assets

Acceptance Criteria Make sure that the event is generated according to the configuration parameters
provided by the adapter

Requirements filled RQ_0008, RQ_0009, RQ_0010, RQ_0011, RQ_0012, RQ_0017, RQ_0022, RQ_0024, RQ_0029,
RQ_0030, RQ_0040, RQ_0043, RQ_0044, RQ_0068, RQ_0076, RQ_0082, RQ_0093, RQ_0117,
RQ_0136, RQ_0197, RQ_0246, RQ_0248, RQ_0291, RQ_0292, RQ_0293, RQ_0295, RQ_0296,
RQ_0321, RQ_0322, RQ_0363, RQ_0390, RQ_0391, RQ_0412, RQ_0413, RQ_0448, RQ_0460,
RQ_0461, RQ_0467, RQ_0468, RQ_0491, RQ_0515, RQ_0516, RQ_0549, RQ_0552, RQ_0572,
RQ_0573, RQ_0575, RQ_0576, RQ_0611, RQ_0612, RQ_0664, RQ_0680, RQ_0723, RQ_0724,
RQ_0739, RQ_0783, RQ_0798, RQ_0824, RQ_0825, RQ_0879, RQ_0884, RQ_0960, RQ_0962,
RQ_0973, RQ_0975, RQ_0976, RQ_0977, RQ_0988, RQ_0989, RQ_0991, RQ_0992, RQ_1007,
RQ_1008, RQ_1047, RQ_1048, RQ_1049, RQ_1050

T51A002
Send data for
asynchronous data
acquisition

Priority: Must

Who: Data Acquisition Component
When / Where: Runtime of the application depending on event’s scheduling in
the configuration

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 220 / 334

What: Send data to the zApps or other assets through a push mechanism or to
the Services and Message Bus Component through pub/sub mechanism
Why: Provide asynchronously data to the ZDMP assets

Acceptance Criteria Make sure that the data is pushed/published according to the zApps or other
assets configuration provided

Requirements filled RQ_0008, RQ_0009, RQ_0010, RQ_0011, RQ_0012, RQ_0017, RQ_0022, RQ_0032, RQ_0033,
RQ_0080, RQ_0246, RQ_0248, RQ_0291, RQ_0292, RQ_0293, RQ_0295, RQ_0296, RQ_0321,
RQ_0322, RQ_0412, RQ_0413, RQ_0460, RQ_0461, RQ_0467, RQ_0468, RQ_0515, RQ_0516,
RQ_0549, RQ_0572, RQ_0573, 0575, RQ_0576, RQ_0680, RQ_0739, RQ_0798, RQ_0824,
RQ_0825, RQ_0881, RQ_0886, RQ_1007, RQ_1008, RQ_1047, RQ_1048, RQ_1049, RQ_1050,

T51A003
Receive data from
Data Source (via
polling process)

Priority: Must

Who: Data Acquisition Component
When / Where: Runtime of the application depending on polling process
configuration
What: Periodically queries data from data sources that do not have a push-
based mechanism
Why: So that zApps or other assets can receive data

Acceptance Criteria Make sure that the data source configuration stores the time interval between
readings. Make sure that a background process retrieves applying the time
interval seconds from data sources.

Requirements filled RQ_0008, RQ_0009, RQ_0010, RQ_0011, RQ_0012, RQ_0017, RQ_0022, RQ_0024, RQ_0029,
RQ_0030, RQ_0040, RQ_0043, RQ_0044, RQ_0068, RQ_0076, RQ_0082, RQ_0093, RQ_0117,
RQ_0136, RQ_0197, RQ_0246, RQ_0248, RQ_0291, RQ_0292, RQ_0293, RQ_0295, RQ_0296,
RQ_0321, RQ_0322, RQ_0363, RQ_0390, RQ_0391, RQ_0412, RQ_0413, RQ_0448, RQ_0460,
RQ_0461, RQ_0491, RQ_0515, RQ_0516, RQ_0549, RQ_0552, RQ_0572, RQ_0573, 0575,
RQ_0576, RQ_0611, RQ_0612, RQ_0664, RQ_0680, RQ_0723, RQ_0724, RQ_0739, RQ_0783,
RQ_0798, RQ_0824, RQ_0825, RQ_0879, RQ_0884, RQ_0960, RQ_0962, RQ_0973, RQ_0975,
RQ_0976, RQ_0977, RQ_0988, RQ_0989, RQ_0991, RQ_0992, RQ_1007, RQ_1008, RQ_1047,
RQ_1048, RQ_1049, RQ_1050,

T51A004
Receive synchronous
data from Data
Source

Priority: Must

Who: Data Acquisition Component
When / Where: Runtime of the application whenever a zApp or other asset
requests data reading a synchronous mechanism not controlled via polling
process
What: Will query data from data sources that do not have a push-based
mechanism
Why: So that zApps or other assets can receive data

Acceptance Criteria Make sure that a range of specific data sources can be queried

Requirements filled RQ_0008, RQ_0009, RQ_0010, RQ_0011, RQ_0012, RQ_0017, RQ_0022, RQ_0024, RQ_0029,
RQ_0030, RQ_0040, RQ_0043, RQ_0044, RQ_0068, RQ_0076, RQ_0082, RQ_0093, RQ_0136,
RQ_0197, RQ_0246, RQ_0248, RQ_0291, RQ_0292, RQ_0293, RQ_0295, RQ_0296, RQ_0321,
RQ_0322, RQ_0363, RQ_0390, RQ_0391, RQ_0412, RQ_0413, RQ_0414, RQ_0415, RQ_0416,
RQ_0448, RQ_0451, RQ_0460, RQ_0461, RQ_0462, RQ_0464, RQ_0466, RQ_0491, RQ_0494,
RQ_0515, RQ_0516, RQ_0549, RQ_0552, RQ_0572, RQ_0573, 0575, RQ_0576, RQ_0611,
RQ_0612, RQ_0664, RQ_0680, RQ_0723, RQ_0724, RQ_0739, RQ_0783, RQ_0798, RQ_0824,
RQ_0825, RQ_0879, RQ_0884, RQ_0960, RQ_0962, RQ_0973, RQ_0975, RQ_0976, RQ_0977,
RQ_0988, RQ_0989, RQ_0991, RQ_0992, RQ_1007, RQ_1008, RQ_1047, RQ_1048, RQ_1049,
RQ_1050

T51A005
Send data for
synchronous data
acquisition

Priority: Must

Who: Data Acquisition Component
When / Where: Runtime of the application whenever a zApp or other asset
requests data reading through a synchronous mechanism not controlled via
polling process
What: Will provide an API to interact with zApps or other component for
synchronous data acquisition through pulling operations
Why: So that zApps can read synchronous data on demand

Acceptance Criteria Make sure that the API is released and connected with zApps / other
components

Requirements filled RQ_0008, RQ_0009, RQ_0010, RQ_0011, RQ_0012, RQ_0017, RQ_0022, RQ_0032, RQ_0033,
RQ_0080, RQ_0246, RQ_0248, RQ_0291, RQ_0292, RQ_0293, RQ_0295, RQ_0296, RQ_0321,
RQ_0322, RQ_0412, RQ_0413, RQ_0414, RQ_0415, RQ_0416, RQ_0451, RQ_0460, RQ_0461,
RQ_0462, RQ_0464, RQ_0466, RQ_0494, RQ_0515, RQ_0516, RQ_0549, RQ_0555, RQ_0572,
RQ_0573, 0575, RQ_0576, RQ_0680, RQ_0739, RQ_0798, RQ_0824, RQ_0825, RQ_0881,
RQ_0886, RQ_1007, RQ_1008, RQ_1047, RQ_1048, RQ_1049, RQ_1050

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 221 / 334

T51A006
Send command to
Data Source

Priority: Should

Who: Data Acquisition Component
When / Where: Runtime of the application whenever a zApp or other asset
requests to act on a data source
What: Will be able to send command on specific private protocols to data
sources
Why: So that zApps can be enrich with functionality to act on data sources
according to certain criteria

Acceptance Criteria Data sources will support commands, will be configured as command receivers,
adapter implementation will support actions on specific protocols

Requirements filled RQ_0393, RQ_0404, RQ_0405, RQ_0406, RQ_0407, RQ_0408, RQ_0453, RQ_0454, RQ_0455,
RQ_0456, RQ_0457, RQ_0458, RQ_0505, RQ_0506, RQ_0507, RQ_0508, RQ_0509, RQ_0510,
RQ_0511, RQ_0512, RQ_0513, RQ_0561, RQ_0562, RQ_0563, RQ_0564, RQ_0565, RQ_0566,
RQ_0567, RQ_0568, RQ_0569, RQ_0571, RQ_0642, RQ_0643, RQ_0644, RQ_0645, RQ_0762

T51A007
Register Data Source
on ZDMP

Priority: Must

Who: User
When / Where: Design of the application
What: Set-up an existing data source as a source of information
Why: So that zApps could receive, query, and possibly send commands to data
sources

Acceptance Criteria Only IT managers/administrators could register data sources on the platform for
a specific company

Requirements filled RQ_0003, RQ_0004, RQ_0005, RQ_0062, RQ_0063, RQ_0064, RQ_0167, RQ_0168, RQ_0389,
RQ_0447, RQ_0489, RQ_0551, RQ_0610, RQ_0662, RQ_0722, RQ_0782

T51A008
Register
asynchronous
sensors or other IIoT
items of Data Source

Priority: Must

Who: User
When / Where: Design of the application
What: Register sensors of a given data source as asynchronous capable
Why: So that zApps could receive data from data sources under certain events
and time intervals

Acceptance Criteria
Only IT managers/administrators could register data sources on the platform for
a specific company

Requirements filled
RQ_0003, RQ_0004, RQ_0005, RQ_0062, RQ_0063, RQ_0064, RQ_0389, RQ_0447, RQ_0489,
RQ_0551, RQ_0610, RQ_0662, RQ_0722, RQ_0782,

T51A009
Register synchronous
sensors or other IIoT
items of Data Source

Priority: Must

Who: User
When / Where: Design of the application
What: Register sensors of a given data source as synchronous capable
Why: So that zApps could receive data from data sources when requesting
proactively

Acceptance Criteria Only IT managers/administrators could register data sources on the platform for
a specific company

Requirements filled RQ_0003, RQ_0004, RQ_0005, RQ_0062, RQ_0063, RQ_0064, RQ_0389, RQ_0489, RQ_0551,
RQ_0610, RQ_0662, RQ_0722, RQ_0782

T51A010
Configure Data
Source as command
receiver

Priority: Should

Who: User
When / Where: Design of the application
What: Configure a data source as a command receiver
Why: So that zApps could send commands according to their needs

Acceptance Criteria

Only IT managers/administrators could configure data sources on the platform
for a specific company as command receivers. The implementation of the
adapter will offer the list of commands that could be asked for by the Data
Acquisition Component under the zApp query

Requirements filled

RQ_0003, RQ_0062, RQ_0393, RQ_0404, RQ_0405, RQ_0406, RQ_0407, RQ_0408, RQ_0453,
RQ_0454, RQ_0455, RQ_0456, RQ_0457, RQ_0458, RQ_0505, RQ_0506, RQ_0507, RQ_0508,
RQ_0509, RQ_0510, RQ_0511, RQ_0512, RQ_0513, RQ_0561, RQ_0562, RQ_0563, RQ_0564,
RQ_0565, RQ_0566, RQ_0567, RQ_0568, RQ_0569, RQ_0571, RQ_0642, RQ_0643, RQ_0644,
RQ_0645, RQ_0762

T51A011 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 222 / 334

List existing Data
Sources already
configured

Who: User (a) and Platform (b)
When / Where: Design of the application
What: List existing registered and configured data sources
Why: So that the User (a) and/or the Platform (b) can acknowledge the sources
of information (data source) that could provide data to specific zApps

Acceptance Criteria Configuration of data sources should be carried about beforehand
Data sources will be shown along with some attributes on a table

Requirements filled RQ_0003, RQ_0062

T51A012
Filter list of Data
Sources according to
name and type

Priority: Should

Who: User
When / Where: Design of the application
What: Filter the configured list of data sources by name and type
Why: So that the User detect what are the sources of information configured

Acceptance Criteria A search box will allow the filtering of the list of data sources by name and type

Requirements filled RQ_0003, RQ_0062

T51A013
Sort list of Data
Sources by columns

Priority: Should

Who: User
When / Where: Design of the application
What: Sort the configured list of data sources by any of the columns
Why: So that a better understanding of configured data sources could be
achieved

Acceptance Criteria Arrows beside each column will allow sorting of the table of data sources in
ascending or descending order

Requirements filled RQ_0003, RQ_0062

T51A014
Check Data Source
status

Priority: Must
Who: User (a) and Platform (b)
When / Where: Runtime of the application

What: Assess the status of the data sources
Why: So that problems with data sources could be identified and
solved

Acceptance Criteria
Each data source on a list of data sources should add a new column showing the
status of the data source

Requirements filled RQ_0342, RQ_0355, RQ_0627, RQ_0639

T51A015
Check sensor or other
IIoT item status

Priority: Must
Who: User (a) and Platform (b)
When / Where: Runtime of the application

What: Assess the status of each data source’s sensor or other IIoT
item.
Why: So that problems with sensors or other IIoT item could be
identified and solved

Acceptance Criteria Each data source could be queried about its sensors or other IIoT items and a
list of those with a new column showing the status of them should be provided

Requirements filled RQ_0342, RQ_0355, RQ_0627, RQ_0639

T51A016
List existing Data
Source Adapters

Priority: Must
Who: User (a) and Platform (b)
When / Where: Design of the application

What: List existing installed adapters getting the detail on version,
etc
Why: So that the User (a) and the Platform (b) can acknowledge
which data source will be able to be configured according to
adapter/version/protocol

Acceptance Criteria Adapters will be tagged with version and protocol

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 223 / 334

List of adapters will be in a table and show name, protocol, version

Requirements filled RQ_0003, RQ_0062

T51A017
Filter list of Data
Source Adapters by
Name

Priority: Should
Who: User
When / Where: Design of the application

What: Filter the existing installed adapters by name
Why: So that it can be detect if a specific adapter is installed
properly

Acceptance Criteria Adapters will be tagged with version and protocol
A search box will allow the filtering of the list of adapters

Requirements filled RQ_0003, RQ_0062

T51A018
Log messages from
Data Acquisition
component

Priority: Must

Who: Data Acquisition Component
When / Where: Runtime of the application

What: Send logs of information, warnings, and errors to the
Services and Message Bus
Why: so that ZDMP platform can provide a unified log to Users

Acceptance Criteria Data Acquisition Component should have logs with messages to be shown
At least three levels of logs agreed with platform (information, warning error)
A list of logs shown according to level of logs

Requirements filled N/A

T51A019
Providing data model

Priority: Must

Who: Data Acquisition Component
When / Where: Runtime of the application

What: Provide the data model to the Data Harmonization
Component
Why: Browse the existing data model for the purposes of data
transformation and harmonization

Acceptance Criteria Data Acquisition Component should have at least one data model
schema stored

Requirements filled RQ_0007, RQ_0046, RQ_0121, RQ_0135, RQ_0686, RQ_0719

Figure 202: Data Acquisition and IIoT Functions

6.1.3 Workflows

The following sub-sections describe the sequence diagrams describing the workflow of the
function and the interactions needed with other components, apps, or users.

 Data reading from Data Source

This feature allows any ZDMP asset to receive data from the data sources. Reading can
be performed in synchronous or asynchronous way.

The asynchronous reading is based on a pub/sub mechanism. The message bus must
subscribe to those events related to data receiving, and the adapter configures the data
sources, so these transmit asynchronously the requested data whenever the event is
triggered. Moreover, the asynchronous data reading can be performed also via a push-
based mechanism for those zApps or other assets that provide it (T51A001/T51A002).

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 224 / 334

Figure 203: Asynchronous data reading from Data Source sequence diagram

Moreover, it is also possible to query data sources periodically, using a polling process
(T51A003/T51A004), and on demand (T51A004/T51A005).

The first reading is enabled by an internal object or process in the Data Acquisition
Component, which instructs periodically the Data Source Adapter to perform a query to a
designated data source. The result then can be relayed using a pub/sub or push
mechanism to the other ZDMP assets.

Figure 204: Polling process for reading sensors sequence diagram

The second reading corresponds to a pull mechanism allowing to read on demand data
from data sources synchronously.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 225 / 334

Figure 205: Synchronous data reading sequence diagram

 Send command to Data Source

This feature allows any zApp to send command to those data sources that allow to be
commanded; to do that the Data Source Adapter will use proprietary developments of
specific data sources (T51A006).

 Add/Configure new Data Source

This feature provides the capability to add an existing data source so that zApps can
interact with compatible data sources.

Registering a data source implies indicating the type of driver/protocol the data source is
using (that should have been previously installed), register the set of sensors or other IIoT
items a data source uses to capture data, define for each sensor or other IIoT items the
supported modes (synchronous, asynchronous), and / or if the data source can be
controlled.

The main functionalities are:

• Register Data Source on ZDMP (T51A007)

• Register asynchronous sensors or other IIoT items of Data Source (T51A008)

• Register synchronous sensors or other IIoT items of Data Source (T51A009)

• Configure Data Source as command receiver (T51A010)

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 226 / 334

Figure 206: Data Source configuration on ZDMP sequence diagrams

 Browsing existing Data Sources / Data Source Adapters

The feature provides the capability to browse data sources / data sources adapters that
have been registered on ZDMP and filter the list according to their name and/or type.
Some of these features are available both from the user side (through the Configuration
UI) and from ZDMP platform side (through the Metadata interface).

The main functionalities from the user side are:

• List existing Data Sources already configured (T51A011a)

• Filter list of Data Sources according to name and type (T51A012)

• Sort list of Data Sources by columns (T51A013)

• Retrieve Data Source / Sensor status (T51A014a/T51A015a)

• List existing Data Source Adapters currently installed (T51A016a)

• Filter list of Data Sources Adapters according to name (T51A017)

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 227 / 334

Figure 207: Browsing existing Data Sources / Data Source Adapters sequence diagram –
user side

The main functionalities from the platform side are:

• List existing Data Sources already configured (T51A011b)

• Retrieve Data Source / Sensor status (T51A014b/T51A015b)

• List existing Data Source Adapters currently installed (T51A016b)

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 228 / 334

Figure 208: Browsing existing Data Sources / Data Source Adapters sequence diagram –
platform side.

 Log messages from Data Acquisition component

This feature (T51A018) allows the Data Acquisition component to log information, warning,
and error messages of the registered data sources via the ZDMP platform.

Once a Data Source Adapter receives an information, warning, or error message from its
connected device in the device’s proprietary format, it will transform the message to the
ZDMP-internal format and send it to the Data Source Manager. The Data Source Manager
will then log the message to the Services and Message Bus component via the Logging
interface.

 Provide data model to the platform

This feature (T51A019) allows the Data Harmonization Component to retrieve the existing
data model for the purposes of data transformation and harmonization. Once the Data
Acquisition component receives a request for the data model schema via the Data Source

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 229 / 334

Gateway interface, it is forwarded to the Data Source Manager that provides a response
with the requested schema.

6.2 Distributed Computing (T5.5)

6.2.1 Overall functional characterization & Context

The Distributed Computing component is composed of an API to
compute Tasks, an API and a HTML / CSS / JS based web frontend
where users can map the location of the computational resources, to
better outline the limitations of the execution of distributed tasks.

6.2.2 Functions / Features

The elements and functionalities that can be found in the component are described as
follows:

• Task Computing API: This feature receives the tasks and their distributed level, and
then compute the tasks.

• Location Mapper: With this feature the user accesses and defines the location of the
computational resources

The function can be grouped to the following features:

Subtask Subtask description

T55B001

Compute Task

Priority: Must

Who: zApps, Orchestration Run-time, AI-Analytics Run-time

When: Any time after resources are defined
Where: Any computational resource located within the Location defined for the
task to be computed.
What: Compute assigned Task
Why: Optimize performance, reducing overall processing time, using Cloud,
Mist, Edge, and Fog computing.

Acceptance Criteria Caller gets HTTP 202 response and a Json object with the Task Id.

Requirements filled RQ_0152, RQ_0153, RQ_0154, RQ_0392, RQ_0393, RQ_0394, RQ_0395, RQ_0450, RQ_0451,
RQ_0452, RQ_0495, RQ_0554, RQ_0555, RQ_0556, RQ_0614, RQ_0661, RQ_0666, RQ_0706,
RQ_0726, RQ_0779, RQ_0785, RQ_0829

T55B002
CRUD Resources
Location

Priority: Must

Who: Administrator / User

When: Any time
Where: The Distributed Computed API or the Location Mapper UI
What: Define / Update / Remove resources location in a scope of Cloud, Mist,
Edge, and Fog Computing.

Why: Map resources location, allowing the execution of tasks in the proper
environment, considering the privacy and the resources needed.

Acceptance Criteria Caller gets HTTP response, and a Json object with the Location object.

Requirements filled RQ_0152, RQ_0153, RQ_0154, RQ_0392, RQ_0393, RQ_0394, RQ_0450, RQ_0451, RQ_0452,
RQ_0495, RQ_0554, RQ_0555, RQ_0556, RQ_0614, RQ_0661, RQ_0666, RQ_0706, RQ_0726,
RQ_0779, RQ_0785, RQ_0829

T55B003
Get Map of
Resources Location

Priority: Must

Who: Users, Application Runtime, Secure Installation

When: Design-time / Runtime of the application
Where: Anywhere on the same level the application publishes events to the bus
What: Get the Map of resources location.

Why: Adhere to the spatial tagging of computing resources, to execute tasks in the
proper environment.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 230 / 334

Acceptance Criteria Caller gets HTTP 200 OK response, and a Json object with a list of the
resource’s locations.

Requirements filled RQ_0614, RQ_0661, RQ_0666, RQ_0706, RQ_0726, RQ_0779, RQ_0785, RQ_0829

T55B004
Get Resource
Location

Priority: Must

Who: Users, Application Runtime, Secure Installation

When / Where: Runtime of the application
What: Get the defined location of a resource.

Why: Adhere to the spatial tagging of computing resources, to execute tasks in the
proper environment.

Acceptance Criteria Caller gets HTTP 200 OK response, and a Json object with the resource location.

Requirements filled RQ_0614, RQ_0661, RQ_0666, RQ_0706, RQ_0726, RQ_0779, RQ_0785, RQ_0829

Figure 209: Distributed Computing Features

6.2.3 Workflows

 Compute Task

The Distributed Computing component receives tasks to be computed from zApps and
ZDMP assets to compute, the result of the computation of the tasks are sent back to the
component that requested the computation.

The main steps are:

• Receive a task (API calls) to be computed, with the spatial location where it can be
executed, and the API call that should be invoked when the computation of the task
is completed

• Obtain the list of computational resources within the spatial location defined

• Execute the task in the computational resources previously found

• Send the result of computing the task, invoking the API call defined

 Define Resource Location

The Distributed Computing component allows users and other ZDMP assets to define, edit
and remove the resources spatial location, composed of MachineID (Mist-level),
LocationID (Edge-level) and SiteID (Fog-level). Only one of the IDs should be used, as
there should always be a clear preference where to run a service. If no IDs are set, the
task is expected to also be runnable in the Cloud. Spatial locations are saved in the
Storage and used to identify where tasks can be computed, considering the scope of Mist,
Edge, Fog and Cloud Computing. The processes of editing and deleting the locations
spatial resources are not described in the diagram.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 231 / 334

Figure 210: Define resources spatial location

 Get Map of Resources Location

The Distributed Computing component allows users and other ZDMP assets to obtain the
map of resources from a specific location, indicating each resource present in the selected
location, its MachineID (Mist), LocationID (Edge) and SiteID (Fog).

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 232 / 334

Figure 211: Get resources from spatial location

 Get Resources Location

The Distributed Computing component allows users and other ZDMP assets to obtain the
location of a resource, indicating each its location, composed of MachineID (Mist),
LocationID (Edge) and SiteID (Fog).

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 233 / 334

Figure 212: Get spatial location from resource

6.3 Digital Twin (T7.5, T8.1)

This section describes the functional components of the Digital
Twin to support T7.3 and T8.1. The main feature provided by this
component is a digital representation of the current state of
manufacturing assets, processes, and products. Such a model will
enable use cases to fulfil some of the objectives described in:

• T7.3 to develop models to detect anomalies in the
consumption and infer probable future defects related to them,
therefore improving the predictive capabilities of the system

• T8.1 Characterization and Modelling to develop virtual product
and process modelling (digital twins)

With these objectives in mind, these sections detail the following functional modules:

• Model Loader

• Model Builder

• Execution Manager

• Simulation Engine

The following figure shows an architecture diagram on how these components relate to the
rest of the components of the platform and is represented here due to slight updates from
the Architecture deliverable D4.3.1.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 234 / 334

Figure 213: Digital Twin Component interaction diagram

6.2.4 Overall functional characterization & Context

Digital twin refers to a digital replica of potential and actual physical assets (physical twin),
containing processes and products that can be used for various purposes. With the digital
twin is possible to represent and model processes and products features (ie physical
characteristics, bill of materials, tolerances, etc). Moreover, it provides data objects
describing various aspects of the physical and logical parts of a manufacturing process.
Additionally, it also includes the status of the different (potentially distributed) components
of the manufacturing system and product features. A digital twin allows to simulate the
future state of the manufacturing process or product production using AI algorithms to
perform a dynamic virtual representation.

6.2.5 Functions / Features

The main functions of the digital twin are:

• Model loader: this function allows to load an instance of virtual representation of a
process or a product. It acts as connector between the Management API interface
and the model builder. It also allows to update a previous configuration with new
parameters and publish the model that must be simulated. That information is sent
the model builder in a compatible format and it forwards configuration updates and
validation information from the model builder to the Management API interface.

• Model Builder: builds a digital model according to the configuration provided by the
model loader into the execution engine implemented in the Process Execution
Manager and to the Simulation Engine with the algorithms that simulate using the

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 235 / 334

selected parameters. The model builder implements functions to update the
configuration and validate the model.

• Process execution manager: Contains the execution engine that manages the
status information of the model. The information is collected from sensors through
the Storage or Message Bus components. Information is saved in time data series in
the Storage via the Batch (historic) Data interface.

• Simulation Engine: Runs the simulation model using a process-based, discrete-
event simulation framework, selected when the model is loaded, applying the
provided configuration parameters. The results are available via the Part-Flow
simulator interface.

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
DT001
Product configuration

Priority: Must

Who: Process Engineer
When: Design-time
Where: Runtime
What: User selects the parameters of the product to be executed o simulated
Why: To configure the product model according to the provided configuration

Acceptance Criteria If successful, the user is prompted with a confirmation message. If not, the user
is prompted with an error message

Requirements filled RQ_0055, RQ_0056, RQ_0104, RQ_0125, RQ_0126, RQ_0137, RQ_0144

DT002
Process configuration

Priority: Must

Who: Process Engineer
When: Anywhere
Where: Design-time
What: User selects the parameters of the process to be executed o simulated
Why: To configure the process model according to the provided configuration

Acceptance Criteria If successful, the user is prompted with a confirmation message. If not, the user
is prompted with an error message

Requirements filled RQ_0055, RQ_0056, RQ_0104, RQ_0125, RQ_0126, RQ_0137, RQ_0144

DT003
Load Model

Priority: Must

Who: Process Engineer or from messaging coming from other modules
When: After DT001 and DT002
Where: Runtime
What: User loads the model
Why: To load/update a new model instance with the provided configuration

Acceptance Criteria If successful, the user is prompted with a confirmation message to validate the
model. If not, the user is prompted with an error message

Requirements filled RQ_0055, RQ_0056, RQ_0104, RQ_0125, RQ_0126, RQ_0137, RQ_0144

DT004
Execute model

Priority: Must

Who: Process Engineer
When: After DT003
Where: Runtime
What: User confirms the execution of the model
Why: To execute the digital representation of the model according to the
provided configuration

Acceptance Criteria If successful, the user is prompted with a confirmation message. If not, the user
is prompted with an error message

Requirements filled RQ_0055, RQ_0056, RQ_0104, RQ_0125, RQ_0126, RQ_0137, RQ_0144

DT005 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 236 / 334

Simulate model Who: Process Engineer
When: After DT003
Where: Runtime
What: User confirms the simulation of the model
Why: To execute the simulation of the model according to the provided
configuration

Acceptance Criteria If successful, the user is prompted with a confirmation message. If not, the user
is prompted with an error message

Requirements filled RQ_0055, RQ_0056, RQ_0104, RQ_0125, RQ_0126, RQ_0137, RQ_0144

DT006
Visualise Output Data

Priority: Must

Who: Process Engineer
When: After DT004 and DT005
Where: Runtime
What: User visualize the model/simulation
Why: To visualise the data inferred from the real and simulated model

Acceptance Criteria If successful, the user is prompted with a confirmation message. If not, the user
is prompted with an error message

Requirements filled RQ_0055, RQ_0056, RQ_0104, RQ_0125, RQ_0126, RQ_0137, RQ_0144

Figure 214: Digital Twin Functions

6.2.6 Workflows

This workflow represents the overall function of the digital twin for executing and
simulating a process or a product.

Figure 215: Digital twin process or product sequence diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 237 / 334

6.3 Quality Inspection Configuration and Execution (T8.3)

This section describes the functional specifications of task T8.3 component. The key
features provided by the component are a set of services to build zApps for non-
destructive product quality inspection. These services will enable use cases in the
project to fulfil some of the objectives described in WP8, mainly:

• O8.3: To manage non-destructive inspection of products
Quality Engine Manager is the main component of the Non-Destructive Product
Inspection process: it receives data (images, hyperspectral-images, X-RAYs, …)
related to product/production that can be used to analyse product quality. Quality Engine
Manager elaborates input data using a set of predefined and configurable rules and its
working parameters. Usually data gathered from an industrial process cannot used “as-is”
and at this stage we consider that pre-processing images phase is part of Quality Engine
processes.

Based on the specialization that this component is designed for, a specific processing
algorithm for quality inspection purposes is implemented: some of these are listed as
distinct modules inside the Quality Engine Manager, as all of them fit the component
generic architectural schema. The developer using the platform chooses from a list the
most appropriate one(s) to match the product inspection requirements of its own
application; the list can be extended when new processing algorithms are needed,
implemented and added on the platform, for this reason a generic New Classic
Function/New AI Modeller feature is included.

Indeed, the nature of these processing algorithms can be of two types, AI-based and non-
AI based (called “Classic” below). The latter includes

• Silhouette (object contour) Extractor

• Silhouette Comparator (typically used in tandem with previous one)

• Features Extraction

• Geometrical Features Analyser

• Object Definition

• Collision Detector

while the former includes

• AI Image Classifier

• AI Image Labeller

forming together a set of analytical tools which helps solving most of the product
inspection cases coming from Requirements Analysis D4.1 deliverable.

The processing tools based on AI models are more demanding in designing and
preparation due to the training procedure, as showed in the left part of the architecture
schema, which only deals with AI modelling. To reflect this distinction, the functional
specification description is split in two sections. The first one, described here, is related to
the deployment and run-time execution of the component, which embraces all processing
algorithms, including the AI-based ones once the AI model is trained and available for
execution. The second section is related to the design and training of the AI-based
algorithms, due to the peculiarity of the technology.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 238 / 334

6.3.1 Overall functional characterization & Context

Based on the specialization that this component has been implemented for, it will provide
the end user/zApp using it with product quality related information (defects, quality rate, …)
or with any other intermediate output which can be useful to assess product quality KPIs.
Run-time relevant parameters of the components are configurable as well the source of
the input to inspection algorithm should be determined by the user of the component.

6.3.2 Functions / Features

• Configure parameters: Configuration parameters can be set by a user via the user
interface or by an external component/zApp via the update of configuration input
files. The run-time relevant parameters of the component are configurable.

• Select data source: Through the user interface the user can select the source type
and the data sources that provide the required data to the algorithm. Input data can
come from Message Bus or Storage, which determines the continuous or one-time
operation of the component.

• Select data destination: Through the user interface the user can select the
destination type where to send processed data and results from algorithm. Output
data can be sent to Message Bus or saved on Storage.

• Execute analysis: The analysis is performed automatically when new data is
published for the input source or by request via the user interface. The component
produces one output per call.

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
T83A001
Select analysis type

Priority: Must

Who: Product Engineer or zApp Developer
Where: Anywhere
When: At design-time, as a first step
What: Select the processing algorithm to be used to process data for quality
inspection
Why: To select the needed processing algorithm

Acceptance Criteria The selected algorithm belongs to the list of available ones

Requirements filled N/A

T83A002
Select streaming data
source

Priority: Must

Who: Product Engineer or zApp Developer
When: At design-time, after T83A001
Where: Anywhere
What: Specifies the input source needed for quality inspection, by subscribing a
specific topic on the Message Bus
Why: To provide the source to the processing algorithm

Acceptance Criteria The user can select the data sources that have been previously made available
in the platform

Requirements filled RQ_0297, RQ_0387, RQ_0445, RQ_0493, RQ_0549, RQ_0627, RQ_0639, RQ_0680, RQ_0739,
RQ_0798

T83A003
Specify historical data
source

Priority: Must

Who: Product Engineer or zApp Developer
Where: Anywhere
When: At design-time, after T83A002
What: Specifies the input data needed for quality inspection from the Storage
Why: To provide the proper input to the processing algorithm

Acceptance Criteria The user can select the data that have been previously saved

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 239 / 334

Requirements filled N/A

T83A004
Select streaming data
destination

Priority: Must

Who: Product Engineer or zApp Developer
Where: Anywhere
When: At design-time, after T83A001
What: Select the output/results destination by indicating a specific topic to be
published on the Message Bus
Why: To provide output broadcast

Acceptance Criteria The source of output is known

Requirements filled RQ_0302, RQ_0387, RQ_0445, RQ_0493, RQ_0549, RQ_0627, RQ_0639, RQ_0680, RQ_0697,
RQ_0698, RQ_0699, RQ_0703, RQ_0739, RQ_0798

T83A005
Specify historical data
destination

Priority: Must

Who: Product Engineer or zApp Developer
Where: Anywhere
When: At design-time, after T83A004
What: Specifies the output data destination on the Storage
Why: To store output including results

Acceptance Criteria The user can select the data destinations that are available

Requirements filled RQ_0302, RQ_0387, RQ_0445, RQ_0493, RQ_0549, RQ_0627, RQ_0639, RQ_0680, RQ_0697,
RQ_0698, RQ_0699, RQ_0703, RQ_0739, RQ_0798

T83A006
Configure

Priority: Must

Who: Product Engineer or zApp Developer
Where: Anywhere
When: At design-time, after T83A001; at run-time as well
What: Configures the run-time relevant parameters of the component. When
dealing with AI based algorithms, this implies selecting the trained model to be
used
Why: needed for the component to function properly as desired

Acceptance Criteria The necessary parameters for functioning of the component are known

Requirements filled RQ_0309, RQ_0395, RQ_0557, RQ_0558, RQ_0815

T83A007
Execute the analysis

Priority: Must

Who: Quality Engine Manager
Where: Anywhere
When: Product Engineer or zApp Developer ask for quality inspection
processing, or automatically through message bus publication of new input data
from production. At run-time
What: performs the quality analysis
Why: To have the quality results as output of the component

Acceptance Criteria The component produces the expected output

Requirements filled RQ_0310, RQ_0302, RQ_0387, RQ_0445, RQ_0493, RQ_0549, RQ_0627, RQ_0639, RQ_0680,
RQ_0687, RQ_0739, RQ_0798, RQ_0815

T83A008
Send analysis results

Priority: Must

Who: Quality Engine Manager
Where: Anywhere
When: Product Engineer or zApp Developer ask for processing algorithm results.
At run-time
What: sends the quality analysis results
Why: To allow prompt access to the quality results as output of the component

Acceptance Criteria The component produces the expected output

Requirements filled RQ_0310

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 240 / 334

Figure 216: Quality Inspection Configuration and Execution Functions

6.3.3 Workflows

 Select analysis type

The following diagram explains this function and the necessary interactions with other
components.

Figure 217: Select Analysis Type

 Select streaming data source

The following diagram explains this function and the necessary interactions with other
components.

Figure 218: Select Streaming Data Source

 Specify historical data source

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 241 / 334

Figure 219: Specify Historical Data Source

 Select streaming data destination

The following diagram explains this function and the necessary interactions with other
components.

Figure 220: Select Streaming Data Destination

 Specify historical data destination

The following diagram explains this function and the necessary interactions with other
components.

Figure 221: Specify Historical Data Destination

 Configure

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 242 / 334

Figure 222: Configure Sequence Diagram

 Execute analysis

The following diagram explains this function and the necessary interactions with other
components.

Figure 223: Execute Analysis

 Send analysis results

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 243 / 334

Figure 224: Send Analysis Results

6.4 Quality AI Inspection: Design and Training (T8.3)

6.4.1 Overall functional characterization & Context

This module is part of Non-Destructive Inspection (T8.3). When using supervised
AI models to extract quality related information through analysis of production
data, a model training process is needed before model deployment and final
execution for quality analysis. The training process might be re-run when better or
more extendedly labelled datasets are provided or when a new product type is
considered.

6.4.2 Functions / Features

• AI model selection: To select between available models associated to the specific
AI Engine (ie Image Classifier, Image Labeller, etc). This feature allows to select the
model from the model storage, to (re)train it with available data sets.

• Training Data source configuration: To configure the data sources that provides
the required data to the training process. This feature allows to select the data source
used to collect the required input to train and evaluate the model. Therefore, the data
source should be a valid data source (either external or internal) already configured
in the ZDMP Platform.

• Training parameters configuration: To configure different properties to be used to
train the model, like data format, accuracy thresholds, hyper-parameters
configuration.

• Train AI model: To train the created model using the provided model, data
sequence and configuration.

• Store trained AI model: To store the trained model to make it available for run-time
deployment

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
T83B001
Select AI Engine

Priority: Must

Who: Product Engineer or zApp Developer
Where: Anywhere
When: At design-time when AI models need to be selected for training
What: End user selects specific AI processing engine (AI Image Classifier, AI
Image Labeller, …) to train a model associated to it
Why: To obtain a list of associated models

Acceptance Criteria The selected AI processing engine belongs to the list of available ones

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 244 / 334

Requirements filled RQ_0306

T83B002
Select AI model

Priority: Must

Who: Product Engineer or zApp Developer
Where: Anywhere
When: At design-time, after T83B001
What: End user selects the AI model to be trained
Why: To improve quality analysis performance, AI models need to be trained

Acceptance Criteria The selected AI model belongs to the list of available ones

Requirements filled RQ_0306

T83B003
Select training
dataset

Priority: Must

Who: Product Engineer or zApp Developer
Where: Anywhere
When: At design-time, after T83B001
What: End user selects the training dataset from available historical data
Why: To train selected AI model with selected dataset

Acceptance Criteria Data have the required format

Requirements filled RQ_0307

T83B004
Select training
parameters

Priority: Must

Who: Product Engineer or zApp Developer
Where: Anywhere
When: At design-time, after T83B001
What: End user selects training parameters
Why: To configure training process

Acceptance Criteria Parameters have the required format

Requirements filled RQ_0306

T83B005
Train Model

Priority: Must

Who: AI Model Training Engine
Where: Anywhere
When: End user starts the training procedure
What: Load selected model, dataset, configuration and start training
Why: To improve inspection capabilities

Acceptance Criteria A new trained model is available

Requirements filled RQ_0306

T83B006
Training KPI status

Priority: Must

Who: AI Model Training Engine
Where: Anywhere
When: During training
What: Training status (running, target reached/unreached) and other meaningful
training KPIs are available during training
Why: To let data analyst monitor training performance

Acceptance Criteria A set of KPIs is available

Requirements filled RQ_0308

T83B007
StopTraining

Priority: Must

Who: Product Engineer or zApp Developer
Where: Anywhere
When: Data analyst from end user interface sends stop/start command
What: Stop training the model
Why: To let Data Analyst stop, reconfigure, and restart training, for example
when a new rule to start/stop training task is to be applied with respect to
previously defined ones

Acceptance Criteria The training process is stopped as expected

Requirements filled RQ_0306

T83B008 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 245 / 334

Store Trained Model Who: AI manager
Where: Anywhere
When: Current error indicator, ie requested accuracy, is improved/reached after
a model training Data Analyst can decide to store the model
What: Stores trained model to AI Model Storage
Why: To let Quality Inspection Engine update the model to be executed

Acceptance Criteria The trained model is stored and available to be deployed

Requirements filled RQ_0309

Figure 225: Quality AI Inspection: Design and Training Functions

6.4.3 Workflows

 Select AI model

The following diagram explains this function necessary interactions with other
components.

Figure 226: Select AI Model

 Select training dataset

The following diagram explains this function and the necessary interactions with other
components.

Figure 227: Select Training Dataset

 Select training parameters

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 246 / 334

Figure 228: Select Training Parameters

 Start training and training KPI status

The following diagram explains this function and the necessary interactions with other
components.

Figure 229: Start Training and Training KPI Status

 Stop training

The following diagram explains this function and the necessary interactions with other
components.

Figure 230: Stop Training

 Store trained model

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 247 / 334

Figure 231: Store Trained Model

6.4.4 Additional Issues

The following table is about remaining issues after the description of the functional
specifications.

Issue Description Next Steps Lead
(Rationale)

Unfilled
Requirements

The following requirements with a “must“-priority
were targeted at the task 8.3, but were neither
filled by this module, nor by the other modules
from T8.3: RQ_0298 ÷ RQ_0301, RQ_0311,
RQ_0313, RQ_0690 ÷ RQ_0696. They deal
with the functionality of labelling/classifying
quality defects on images, which is the
starting/improving condition to train supervised
ML models for quality inspection on images.

VSYS oversees
implementing AI
quality analysis on
product images and
will also take care of
providing proper
operator interfaces to
satisfy these
requirements linked to
T8.3

T8.3 Task
lead VSYS

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 248 / 334

7 zApps

zApps are referred to as the applications that are developed on top of the platform level
infrastructure and utility components (WP5-6) and the specialized components and
modules for zero defects processes and products (WP7-8) and are created within WP9-10.

zApps were defined within the use cases as the applications to solve the use cases
primary problems and present the stakeholder from the factory / manufacturing with a user
interface to help him optimize the process or control the product defects etc. Some of the
zApps were defined as separate applications but have been decided to be implemented
within the same functional application and are therefore described accordingly within one
section.

For the zApps, no concrete architecture is planned or defined, but still describing the
functionalities of the applications and the necessary control flow is supposed to lead the
development in a more concrete direction and was therefore realized for this deliverable.

7.1 zMachineMonitor & Analytics (zA2.01-zA2.02)

7.1.1 Overall functional characterization & Context

zMachineMonitor is employed to evaluate the health status of a machine tool and its
components, aiding the operator to avoid hidden malfunctions. zMachineMonitor automatically
gathers, stores and analyse both equipment and machining process data. The application can
detect sudden or abrupt changes that can lead to a premature failure and that needs to be
taken care of by the operator in a short time, generating notifications to alert the operator or
the shop floor manager. The application uses temporal series of values read by the machine,
which are is read periodically and stored in different data formats: binary or ASCII delivered in
a format readable by a program such Json / Bson or XML. Monitoring data and corresponding
machine health values are offered to the operator by means of a user interface.
zMachineAnalytics analyses and estimates deviations (faults, non-conformity process
parameters, etc) from data gathered by the zMachineMonitor. A dedicated UI delivers status
and monitoring information to the Machine Tool User in the zMachineMonitor application,
information that will be available to the Machine Tool User, Machine Tool Manufacturer, or the
Machine Tool Components Manufacturer. Hence, zMachineAnalytics diagnoses and analyses
potential problem(s) as will trigger appropriate mitigation actions.

7.1.2 Functions / Features

• Data sources configuration: Backend function to configure the data sources used
to integrate master data. Master data includes product type information, and
inspection test information

• Industrial data collection configuration: Backend function to configure the
connections to exchange data with the machine. The user can define different
industrial variables

• Data preparation: This this function consists in writing the specified configuration
values into the specified industrial variables using the configured connections

• Results analysis: To make a detailed analysis of the results, comparing new
measurements with historic data and analyse trends in available time series to detect
and predict possible faults, non-conformity process parameters, etc

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 249 / 334

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
ZA2.01.1
Configure master data
sources

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User selects data sources (files, database connections) to integrate
master data
Why: To integrate master data information

Acceptance Criteria The user can create a new master data configuration
The user can create a new data source
The user can select data sources that have been previously configured in the
platform
The user can update a master data configuration with the selected data source
Master data provides access to product type information

Requirements filled RQ_0108, RQ_0111

ZA2.01.2
Configure machine
connection

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User configures a connection to machine
Why: To configure the connection to the machine and enable data exchange

Acceptance Criteria The user can create a new unit model
The user can edit the connection parameters
Optionally, the user could browse the field network to search for available
connections

Requirements filled RQ_0131, RQ_0135

ZA2.01.3
Configure industrial
variables

Priority: Should

Who: ZDMP consultant
What: User configures industrial variables
When / Where: During configuration (runtime), on premise
Why: To uniquely identify industrial variable in the machine

Acceptance Criteria The user can create a new industrial variable
The user can specify the necessary parameters to read and write data from the
variable
The user can edit the model to specify which variables are used to read and write
machine data
The user can select industrial variables that have been previously configured

Requirements filled RQ_0131

ZA2.01.4
Edit configuration of
machine

Priority: Must

Who: Test Engineer
When / Where: During configuration (runtime), on premise
What: User selects a machine
Why: To edit the configuration of the machine

Acceptance Criteria The user can edit the configuration
The user can select a machine from master data
The user can set the machine type of the configuration
The machine has a unique identifier
The user can select an industrial variable to read the machine identifier
For every write variable, the user can set a name
For every write parameter, the user can select an industrial variable to write the
parameter

Requirements filled RQ_0138, RQ_0139

ZA2.01.5
Load configuration
parameters

Priority: Must

Who: Machine data collection adapter
When / Where: Before the machine starts the process (runtime)

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 250 / 334

What: write the values of the machine
Why: To configure the machine

Acceptance Criteria The Machine data collection adapter can get the variables and values to write

Requirements filled RQ_0138, RQ_0139

ZA2.01.6
Machine operation
detection

Priority: Must

Who: Machine data collection adapter
When / Where: When the machine starts production (runtime)
What: Read the values performed in the machine
Why: To know the machine is operating

Acceptance Criteria The machine adapter can read the machine variables

Requirements filled RQ_0136

ZA2.01.7
Collect data

Priority: Must

Who: Machine data collection adapter
When / Where: When the machine is in production (runtime),)
What: Read data
Why: To detect existing data

Acceptance Criteria The machine adapter can read the data in the configured variables

Requirements filled RQ_0127, RQ_0128, RQ_0129, RQ_0130, RQ_0131, RQ_0135, RQ_0136, RQ_0137

ZA2.01.8
Save data

Priority: Must

Who: Application storage
When / Where: When the machine starts the operation (runtime), in the machine
What: Save the machine data
Why: To provide information and insights to the test engineer

Acceptance Criteria The machine adapter can record data
The data record includes the parameters and values used
The data record includes the machine type
The data records include the machine unique identifier and are time-stamped

Requirements filled RQ_0117, RQ_0118, RQ_0119, RQ_0124, RQ_0125, RQ_0126,

ZA2.01.9
Analyse results

Priority: Must

Who: Operator, Machine builder
When / Where: When the machine is in operation, in the test department
What: Analyse the results
Why: To check available results

Acceptance Criteria The user(s) can set parameters to filter data and configure analytics
Process quality prediction can identify trends in health of the machine and
components and predict the properties of future batches
Process quality prediction can publish the results

Requirements filled RQ_0109, RQ_0110, RQ_0113, RQ_0114, RQ_0115, RQ_0116, RQ_0120, RQ_0133, RQ_0134

ZA2.01.10
Send notifications

Priority: Must

Who: Machine builder
When / Where: When the analysis predicts a possible malfunction
What: Send an email notification
Why: To warn involved parties

Acceptance Criteria Monitoring and alerting can subscribe to analytic results
Monitoring and alerting can publish notifications when the results match the
configured rules
The test engineer can check statistical properties of the machine status
The test engineer can check the correlation of the parameters and machine
status

Requirements filled RQ_0135

ZA2.02.1
Analyse results

Priority: Must

Who: Operator, Machine builder
When / Where: When the machine is in operation, in the test department
What: Analyse the results

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 251 / 334

Why: To check available results

Acceptance Criteria The user(s) can set parameters to filter data and configure analytics
Process quality prediction can identify trends in health of the machine and
components and predict the properties of future batches
Process quality prediction can publish the results

Requirements filled RQ_0140, RQ_0141, RQ_0142, RQ_0143, RQ_0144, RQ_0145, RQ_0146, RQ_0147, RQ_0148,
RQ_0149, RQ_0150, RQ_0151, RQ_0152, RQ_0153, RQ_0154

Figure 232zA2.01-2.02 Features

7.1.3 Workflows

In this section is exposed the sequential diagrams that represents all interactions between
components and users in each zApp. The sequential diagrams are divided by zApp and in
each of them the interactions between the components and users can be visualized.

Figure 233: Workflow of zMachineMonitor & Analytics

7.2 zParameterMonitor & Analytics (zA2.03-z2.04)

7.2.1 Overall functional characterization & Context

zParameterMonitor & Analytics is used to define which are the best parameters set for a
specific task based on the quality of previous results offered by a defined machine. This
application registers general manufacturing conditions, machine parameters, and quality
results (feedback regarding the produced part quality). Hence, whenever a similar task
shall be performed under similar conditions, the zApp will propose the most similar/higher
quality situation and shows the parameters used.
zParameterAnalytics performs the analysis needed to automatically detect which
parameter combination provides the best results given a condition (eg type of machine,
environmental variables, etc).

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 252 / 334

7.2.2 Functions / Features

• Data sources configuration: Backend function to configure the data sources used
to integrate master data. Master data includes product type information, and
inspection test information.

• Industrial data collection configuration: Backend function to configure the
connections to exchange data with the machine. The user can define different
industrial variables.

• Data preparation: This this function consists in writing the specified configuration
values into the specified industrial variables using the configured connections.

• Feedback: this function will record the operator feedback on the produced part or
component. This information will help the training of the algorithms.

• Results analysis: To make a detailed analysis of the results, comparing new
measurements with historic data and analyse trends in available time series to detect
and predict best set of parameters for a predefined machine operation.

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
ZA2.03.1
Configure master data
sources

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User selects data sources (files, database connections) to integrate
master data
Why: To integrate master data information

Acceptance Criteria The user can create a new master data configuration
The user can create a new data source
The user can select data sources that have been previously configured in the
platform
The user can update a master data configuration with the selected data source
Master data provides access to product type information

Requirements filled RQ_0156, RQ0157

ZA2.03.2
Configure test unit
connection

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User configures a connection to machine
Why: To configure the connection to the machine and enable data exchange

Acceptance Criteria The user can create a new unit model
The user can edit the connection parameters
Optionally, the user could browse the field network to search for available
connections

Requirements filled RQ_0158

ZA2.03.3
Configure industrial
variables

Priority: Should

Who: ZDMP consultant
What: User configures industrial variables
When / Where: During configuration (runtime), on premise
Why: To uniquely identify industrial variable in the machine

Acceptance Criteria The user can create a new industrial variable
The user can specify the necessary parameters to read and write data from the
variable
The user can edit the model to specify which variables are used to read and write
machine data
The user can select industrial variables that have been previously configured

Requirements filled RQ_0131

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 253 / 334

ZA2.03.4
Edit test configuration
of machine

Priority: Must

Who: Test Engineer
When / Where: During configuration (runtime), on premise
What: User selects a machine
Why: To edit the configuration of the machine

Acceptance Criteria The user can edit the configuration
The user can select a machine from master data
The user can set the machine type of the configuration
The machine has a unique identifier
The user can select an industrial variable to read the machine identifier
For every write variable, the user can set a name
For every write parameter, the user can select an industrial variable to write the
parameter

Requirements filled RQ_0138, RQ_0139

ZA2.03.5
Load configuration
parameters

Priority: Must

Who: Machine data collection adapter
When / Where: Before the machine starts the process (runtime)
What: write the values of the machine
Why: To configure the machine

Acceptance Criteria The Machine data collection adapter can get the variables and values to write

Requirements filled RQ_0138, RQ_0139

ZA2.03.6
Machine operation
detection

Priority: Must

Who: Machine data collection adapter
When / Where: When the machine starts production (runtime)
What: Read the values performed in the machine
Why: To know the machine is operating

Acceptance Criteria The machine adapter can read the machine variables

Requirements filled RQ_0136

ZA2.03.7
Collect data

Priority: Must

Who: Machine data collection adapter
When / Where: When the machine is in production (runtime),)
What: Read data
Why: To detect existing data

Acceptance Criteria The machine adapter can read the data in the configured variables

Requirements filled RQ_0127, RQ_0128, RQ_0129, RQ_0130, RQ_0131, RQ_0135, RQ_0136, RQ_0137

ZA2.03.8
Save data

Priority: Must

Who: Application storage
When / Where: When the machine starts the operation (runtime), in the machine
What: Save the machine data
Why: To provide information and insights to the test engineer

Acceptance Criteria The machine adapter can record data
The data record includes the parameters and values used
The data record includes the machine type
The data records include the machine unique identifier and are time-stamped

Requirements filled RQ_0117, RQ_0118, RQ_0119, RQ_0124, RQ_0125, RQ_0126

ZA2.03.9
Send feedback

Priority: Must

Who: Operator, Machine builder,
When / Where: When the machine operation is finished
What: Complete form indicating the performance of the machine related to the
offered quality
Why: To register status

Acceptance Criteria Monitoring and alerting can subscribe to analytic results
Monitoring and alerting can publish notifications when the results match the
configured rules
The test engineer can check properties of the machine operation data

Requirements filled RQ_0155

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 254 / 334

ZA2.04.1
Analyse parameters

Priority: Must

Who: Operator, Machine builder
When / Where: When the machine is in operation, in the test department
What: Analyse the results
Why: To check available results

Acceptance Criteria The user(s) can set parameters to filter data and configure analytics
Process quality prediction can identify trends in health of the machine and
components and predict the properties of future batches
Process quality prediction can publish the results

Requirements filled RQ_0140, RQ_0141, RQ_0142, RQ_0143, RQ_0144, RQ_0145, RQ_0146, RQ_0147, RQ_0148,
RQ_0149, RQ_0150, RQ_0151, RQ_0152, RQ_0153, RQ_0154

Figure 234: zA2.03-z2.04 Functions

7.2.3 Workflows

In this section is exposed the sequential diagrams that represents all interactions between
components and users in each zApp. The sequential diagrams are divided by zApp and in
each of them the interactions between the components and users can be visualized.

Figure 235. Workflow of zParameterMonitor & Analytics

7.3 z3DScannerDriver & z3DGenerator (zA2.05-zA2.06)

7.3.1 Overall functional characterization & Context

z3DGenerator is employed to generate a 3D file in a model format from a collection of
points that is used to detect potential collisions of the machine with the produced part that
may damage the surface quality of the produced part.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 255 / 334

7.3.2 Functions / Features

• Data sources configuration: Backend function to configure the data sources used
to integrate master data. Master data includes product type information, and
inspection test information.

• Industrial data collection configuration: Backend function to configure the
connections to exchange data with the machine. The user can define different
industrial variables.

• Data preparation: This this function consists in writing the specified configuration
values into the specified industrial variables using the configured connections.

• Results analysis: To make a detailed analysis of the results, comparing new
measurements with historic data and analyse trends in available time series to detect
and predict possible faults, non-conformity process parameters, etc

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
ZA2.05.1
Configure master data
sources

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User selects data sources (files, database connections) to integrate
master data
Why: To integrate master data information

Acceptance Criteria The user can create a new master data configuration
The user can create a new data source
The user can select data sources that have been previously configured in the
platform
The user can update a master data configuration with the selected data source
Master data provides access to product type information

Requirements filled N/A

ZA2.05.2
Configure machine
connection

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User configures a connection to machine
Why: To configure the connection to the machine and enable data exchange

Acceptance Criteria The user can create a new unit model
The user can edit the connection parameters
Optionally, the user could browse the field network to search for available
connections

Requirements filled N/A

ZA2.05.3
Configure industrial
variables

Priority: Should

Who: ZDMP consultant
What: User configures industrial variables
When / Where: During configuration (runtime), on premise
Why: To uniquely identify industrial variable in the machine

Acceptance Criteria The user can create a new industrial variable
The user can specify the necessary parameters to read and write data from the
variable
The user can edit the model to specify which variables are used to read and write
machine data
The user can select industrial variables that have been previously configured

Requirements filled RQ_0131

ZA2.05.4 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 256 / 334

Edit configuration of
machine

Who: Test Engineer
When / Where: During configuration (runtime), on premise
What: User selects a machine
Why: To edit the configuration of the machine

Acceptance Criteria The user can edit the configuration
The user can select a machine from master data
The user can set the machine type of the configuration
The machine has a unique identifier
The user can select an industrial variable to read the machine identifier
For every write variable, the user can set a name
For every write parameter, the user can select an industrial variable to write the
parameter

Requirements filled RQ_0138, RQ_0139

ZA2.05.5
Load configuration
parameters

Priority: Must

Who: Machine data collection adapter
When / Where: Before the machine starts the process (runtime)
What: Write the values of the machine
Why: To configure the machine

Acceptance Criteria The Machine data collection adapter can get the variables and values to write

Requirements filled RQ_0138, RQ_0139

ZA2.05.6
Machine operation
detection

Priority: Must

Who: Machine data collection adapter
When / Where: When the machine starts production (runtime)
What: Read the values performed in the machine
Why: To know the machine is operating

Acceptance Criteria The machine adapter can read the machine variables

Requirements filled RQ_0127, RQ_0128, RQ_0129, RQ_0130, RQ_0131, RQ_0135, RQ_0136, RQ_0137

ZA2.05.7
Collect data

Priority: Must

Who: Machine data collection adapter
When / Where: When the machine is in production (runtime),)
What: Read data
Why: To detect existing data

Acceptance Criteria The machine adapter can read the data in the configured variables

Requirements filled RQ_0127, RQ_0128, RQ_0129, RQ_0130, RQ_0131, RQ_0135, RQ_0136, RQ_0137

ZA2.05.8
Save data

Priority: Must

Who: Application storage
When / Where: When the machine starts the operation (runtime), in the machine
What: Save the machine data
Why: To provide information and insights to the test engineer

Acceptance Criteria The machine adapter can record data
The data record includes the parameters and values used
The data record includes the machine type
The data records include the machine unique identifier and are time-stamped

Requirements filled RQ_0117, RQ_0118, RQ_0119, RQ_0124, RQ_0125, RQ_0126

ZA2.05.9
Analyse results

Priority: Must

Who: Machine builder
When / Where: When the machine is in operation, in the test department
What: Analyse the results
Why: To check available results

Acceptance Criteria The user(s) can set parameters to filter data and configure analytics

Requirements filled N/A

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 257 / 334

Figure 236: zA2.05-zA2.06 Functions

7.3.3 Workflows

In this section is exposed the sequential diagrams that represents all interactions between
components and users in each zApp. The sequential diagrams are divided by zApp and in
each of them the interactions between the components and users can be visualized.

Figure 237: Workflow of z3DScannerDriver & z3DGenerator

7.4 zAnomalyDetector (zA1.01)

7.4.1 Overall functional characterization & Context

The main goal of zAnomalyDetector is to create a model for detecting anomalies and
visualize the data variables contributing to such anomaly in a dashboard. This zApp uses
the anomaly detector API provided by the Product Assurance Runtime component to
generate a ML model for fulfilling this goal.

7.4.2 Functions / Features

The functions of the zAnomalyDetector are the following:

• Creation of models for anomaly detection: The Production Supervisor can interact
with zAnomalyDetector to choose the data variables to monitor from the available
ones. With the selected variables, a specific anomaly detector model is created. The
Production Supervisor can subscribe to an existing model to receive notifications
about anomalies detected on the product data by the underlying model.

• Anomaly reporting dashboard: the zApp includes a dashboard with user-friendly
charts to show information regarding anomalous values in the selected variables.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 258 / 334

This dashboard also provides statistical indicators about how the different variables
are relevant in the context of an anomaly.

• Anomalies notification: When an anomaly is detected a visual notification is
reported to the Production Supervisor. Notifications are logged and reported using
the Monitoring and Alerting component. The notification includes which variables are
contributing or “explaining” such anomaly.

• Real-time monitoring: This app provides information in real-time regarding the
values received of the selected variables and several statistics computed by the
model to detect abnormal situations.

The above functions need the implementation of the following tasks:

Subtask Subtask description
T91ZA001
Model variable
initialization

Priority: Must

Who: Production Supervisor
Where: User interface in the browser
When: At design time when zAnomalyDetector is started
What: Choose the set of product data variables from the one currently available
for looking anomalies
Why: To train the model, which performs the anomaly detection, according to the
variables specifically required by the Production Supervisor

Acceptance Criteria The information related to the selected variables will be available in the reporting
window
At least one variable is selected

Requirements filled RQ_0028, RQ_0034

T91ZA002
Model creation

Priority: Must

Who: Production Supervisor
Where: User interface in the browser
When: At runtime after T91ZA001
What: Create an anomaly detector that is continuously looking for anomalies
Why: To detect anomalies in the product data and notify of such issues

Acceptance Criteria A model deployed in run-time with the expected configuration

Requirements filled RQ_0028, RQ_0034

T91ZA003
Model visualization

Priority: Must

Who: Production Supervisor
Where: User interface in the browser
When: At design time when zAnomalyDetector is started
What: Select a previously generated model to report for anomalies
Why: Several anomaly detectors, with different configuration could be executed
simultaneously

Acceptance Criteria List all available anomaly detectors to the supervisor
The model is retrieved, and the information of the anomaly detector dashboard is
changed accordingly
The information related to the selected variables will be available in the reporting
window

Requirements filled N/A

T91ZA004
Time period selection

Priority: Should

Who: Production Supervisor
Where: User interface in the browser
When: At runtime when an anomaly detector model is already loaded in the
dashboard
What: Select a start date and an end date for filtering the data
Why: To help the Production Supervisor in the understanding of the anomalies
generated in a specific time

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 259 / 334

Acceptance Criteria Information of the dashboard must be restricted to the specific period selected for
all the graphical components

Requirements filled N/A

T91ZA005
Anomaly visualization
with Statistical
control charts

Priority: Must

Who: Production Supervisor
Where: User interface in the browser
When: At runtime as new anomalies are retrieved
What: A control chart showing statistical indicators, such as T2 or Squared
Prediction Error, to check whether the current values of the product data
variables (historical or predicted) are in a normal scenario or not
Why: To help in the supervision tasks regarding the status of the production data

Acceptance Criteria Charts must show in real-time the statistical indicator calculation provided by the
model
If no data is received, the error should be notified to the user

Requirements filled RQ_0013

T91ZA006
Variable contribution
plot

Priority: Must

Who: Production Supervisor
Where: User interface in the browser
When: At runtime when an anomaly is selected
What: A bar chart informing the contribution/weighing of the variables in the
anomaly. By default, the contribution plot shows the last anomaly, but the
Production Supervisor can select another variable in the control chart to inspect
its contribution plot.
Why: To inform the Production Supervisor which variables are responsible of the
status of the production data

Acceptance Criteria The contribution of all the variables selected by the Production Supervisor must
be shown

Requirements filled RQ_0021

T91ZA007
Anomalies History

Priority: Should

Who: Production Supervisor
Where: User interface in the browser
When: At runtime
What: A list of the last notifications generated by the current loaded anomaly
detector
Why: To inform the Production Supervisor about anomalies generated when the
application was running

Acceptance Criteria The last ten notifications must be recorded and must be accessible from the
dashboard

Requirements filled N/A

T91ZA008
Time Series plot

Priority: Should

Who: Production Supervisor
Where: User interface in the browser
When: At runtime
What: A chart showing the values received of a variable over time
Why: To report visually the temporal behaviour of a variable

Acceptance Criteria A time series plot could be generated for any of the variables selected by the
Production Supervisor

Requirements filled N/A

Figure 238: zA1.01 Functions

7.4.3 Workflows

 Model creation

The createModel() subtask is explained in Supervision Model API functional specifications.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 260 / 334

Figure 239: Model Creation Sequence Diagram

 Model visualization

The following diagram explains this function and the necessary interactions with other
components.

Figure 240: Model Visualization Sequence Diagram

 Time period selection

For this function, predictions include the following:

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 261 / 334

• Statistical indicators, such as T2 or Squared Prediction Error, to update the
corresponding control charts (subtask T91ZA005)

• Variable contribution plot (subtask T91ZA007)

Figure 241: Time Period Selection Sequence Diagram

7.4.3.3.1 Notification history
The following diagram explains this function and the necessary interactions with other
components.

Figure 242: Notification History Sequence Diagram

7.4.3.3.2 Time series plot
The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 262 / 334

Figure 243: Time Series Plot Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 263 / 334

7.5 zDigitalTwin (z1.02)

7.5.1 Overall functional characterization & Context

The main goal of the zDigitalTwin app is to process real-time data from a manufacturing
process and report a simulation of the observed system. One application in the context of
ZDMP is to simulate objective variables, ie manufacturing data related with quality or
performance indicators, and then to produce a prediction about how the manufacturing
system will behave. To achieve this goal this zApp creates a model using the AI
components provided by the ZDMP platform. As new data is processed, this model
generates predictions regarding the values of the objective variables selected by the end-
user, and, then a web-based dashboard reports such predictions using user-friendly
charts. Additionally, this zApp includes the functionality to optimize process variables (or
parameters), ie variables from the manufacturing process not explicitly related to an
indicator, but with a clear influence. An optimization produces recommendations regarding
such process variable to maximize (improve quality) or minimize (reduce faulting parts) a
certain objective established by the Quality inspector. For evaluating the improvement of
using the optimized process variables, the end-user could use them in real-time to
generate a simulation on how the process will behave.

7.5.2 Functions / Features

The main functions of the zDigitalTwin are the following:

• Digital Twin Model creation: The Quality Inspector can interact with the
zDigitalTwin interface to choose the set of objective variables to be simulated, from
the set of process data received. Additionally, the end-user can select the process
variables, variables whose values will be used to predict the objective variables.
From the set of selected variables, a digital twin model is trained and deployed using
the ZDMP AI components.

• Predictions subscription: zDigitalTwin is subscribed to an existing digital twin
model to receive the values of the objective variables in real-time

• Reporting Dashboard: the zDigitalTwin includes a web-based interface to show the
predicted and historical values for the objective variables received from the digital
twin model. Using this dashboard, the Quality inspector can define the period for
visualizing historical data and configuring the process variables.

• Optimization: Once a digital twin model is trained it is possible to search for the best
values of the process variables that maximize or minimizes, one or more objective
variables.

These functions need the implementation of the following tasks:

Subtask Subtask description
T91ZD001
Digital Twin model
creation

Priority: Must

Who: Quality inspector
Where: In the User Interface of the zDigitalTwin
When: At design time when the app is started
What: To select variables from the manufacturing data which define a set of
objective variables and a set of process variables, and then, create a digital twin
model
Why: The digital twin model must be trained to predict objective variables
considering process variables

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 264 / 334

Acceptance Criteria Predictions related to the selected variables will be available in the reporting
dashboard

Requirements filled RQ_0045, RQ_0049

T91ZD002
Model subscription

Priority: Must

Who: Quality inspector
Where: In the User Interface of the zDigitalTwin
When: At runtime after T91ZD001
What: Subscribe to an existing digital twin model to get information of the
predicted objective variables
Why: As there could be several digital twin models available, the dashboard only
reports information of the model selected by the Quality inspector

Acceptance Criteria

List all models currently available
A confirmation is sent to the Quality inspector whether the model is sending
predictions to the zApp

Acceptance Criteria Predictions related to the selected variables will be available in the reporting
dashboard

Requirements filled RQ_0103

T91ZD003
Reporting dashboard

Priority: Must

Who: Quality inspector
Where: In the User Interface of the zDigitalTwin
When: At runtime after T91ZD002
What: Show the predicted and historical values for the objective variables or
process variables using a line chart (in a time series fashion) that its updated in
real time
Why: To report the prediction generated by the digital twin model and provide a
visual hint of the accuracy or error of the simulation

Acceptance Criteria Predictions related to the selected variables will be available in the reporting
dashboard
Predictions and historical data must be update in real-time as new predictions
are received from the subscribed model

Requirements filled N/A

T91ZD004
Variable chart
selection

Priority: Should

Who: Quality inspector
Where: In the User Interface of the zDigitalTwin
When: At runtime after T91ZD002
What: Hide or unhide a time-series chart of a specific objective or process
variable
Why: As a digital twin model could involve hundreds of variables, to avoid
creating many charts in the dashboard and improve usability

Acceptance Criteria Predictions related to the selected variables will be available in the reporting
dashboard
Initially, only the objective quality variables will be show and the rest of the
variables will be presented as the Quality inspector selects them

Requirements filled RQ_0045

T91ZD005
Process variables
selection

Priority: Must

Who: Quality inspector
Where: In the User Interface of the zDigitalTwin
When: In design time when the digital twin model to train is specified
What: Define a constant value for a process variable that would be used by the
model for generating the predictions
Why: To change in real time process conditions and check the expected
behaviour of the simulation

Acceptance Criteria A set of initial values will be established by the digital twin model
Variables values must be consistent in terms of data type and ranges

Requirements filled RQ_0045

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 265 / 334

T91ZD006
Dashboard time
period selection

Priority: Should

Who: Quality inspector
Where: In the User Interface of the zDigitalTwin
When: At runtime after T91ZD002
What: Change the period of the information shown in the dashboard
Why: To check how the models have performed in the past or reduce the
amount of information show in the dashboard

Acceptance Criteria Predictions related to the selected variables will be available in the reporting
dashboard
The period filtering is applied simultaneously to every chart shown in the
dashboard
By default, the period is the current working day

Requirements filled N/A

T91ZD007
Optimization
Configuration

Priority: Should

Who: Quality inspector
Where: In the User Interface of the zDigitalTwin
When: At design time after a model is created using T91ZD001
What: Configure the optimization of a digital twin model to minimize or maximize
the value of an objective variable
Why: To find the best set of values of the involved process variables to achieve
a minimization or maximization of an objective variable

Acceptance Criteria Predictions related to the selected variables will be available in the reporting
dashboard
Digital Twin models and variables previously defined by the Quality inspector
must be available for optimization purposes

Requirements filled N/A

T91ZD008
Optimization
Constraints

Priority: Should

Who: Quality inspector
Where: In the User Interface of the zDigitalTwin
When: At design time after T91ZD007
What: Configure the optimization process defining a value range for each of the
process variables involved
Why: To avoid that the optimization process generates as result values not
feasible in the manufacturing environment

Acceptance Criteria Constraints can have minimum and maximum values, so it must be checked that
minimum is lesser than maximum.
Null values are allowed, indicating that there is no minimum (or maximum)
Predictions related to the selected variables will be available in the reporting
dashboard

Requirements filled N/A

T91ZD009
Optimization
Reporting

Priority: Should

Who: Quality inspector
Where: In the User Interface of the zDigitalTwin
When: At runtime after T91ZD008
What: Show the result of the optimization process, ie, the best set of values
according to the quality variable to optimize.
Why: To report the variable values that maximize (or minimizes, depending on
the type of optimization) one or more quality variables.

Acceptance Criteria If a feasible solution is found, then show the values of each of the variables. If
there is no feasible solution, then show an informative message
Predictions related to the selected variables will be available in the reporting
dashboard

Requirements filled N/A

T91ZD010 Priority: Should

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 266 / 334

Optimization
Loading

Who: Quality inspector
Where: In the User Interface of the zDigitalTwin
When: At runtime after T91ZD007
What: Load the result of the optimization process, ie the values obtained in the
process variable configuration (if this functionality is available)
Why: To evaluate the optimization in the dashboard using the real-time data

Acceptance Criteria All the optimized variable values must be loaded in the process variable
configuration
Predictions related to the selected variables will be available in the reporting
dashboard

Requirements filled RQ_0103

Figure 244: z1.02 Functions

7.5.3 Workflows

 Digital Twin Model creation

The createModel() subtask is explained in Product Quality Model API functional
specifications.

Figure 245: Digital Twin Model creation Sequence Diagram

 Model subscription

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 267 / 334

Figure 246: Model Subscription Sequence Diagram

 Results dashboard

The dashboard shows a chart of the predicted and actual values for the quality variables of
the model selected in a combo box. The combo shows the list of models the Quality
inspector is subscripted to. The chart also shows the last historically predicted and actual
values from a determined date range. It also shows the error of those predictions.

This subtask is related to the “T82E008 – Predictions query” subtask of “Quality Predictor”
component.

Figure 247: Update Results Dashboard Sequence Diagram

 Results dashboard date range selection

The dashboard has a date range selector to change the date range shown in the chart.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 268 / 334

 Optimization (configuration)

See deliverable D4.2.1 from task “T4.2 User Mock-ups”. In the optimization configuration
interface, the user must select a model, a variable/s to optimize (specifying the type of
optimization: maximization/minimization) and the constraints for the optimization.

 Optimization

Once the optimization is configured, the user can start the optimization process. During
optimization, the values of the decision variables (predictors) are changed following some
optimization criteria (that depends on the optimization technique used by the app). Those
values must be inside the range specified by the constraints. Then, this new data is sent to
the “Product Quality Prediction” components to get the predictions, that is, the value of the
quality variable/s to optimize. The “check optimization” step compares the last optimized
values with the new ones to check whether the new values are optimum than the last
ones, until a stop criterion is met. When the optimization process is finished, the following
results are shown to the user:

• If the optimization has converged, then the interface shows:

• The value of the optimized variable/s

• The value of the decision variables (predictors) at the optimization point

• If the optimization has not converged this message must be shown: “No feasible
solution found”

Figure 248: Optimization Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 269 / 334

7.6 zAlarm (zA1.03)

7.6.1 Overall functional characterization & Context

The objective of the zAlarm application is to provide important event information in real
time, obtained as input from the zAnomalyDetector application (or in the T5.4 Monitoring &
Alerting in case it is needed), to users through specialized wearables. User may use the
wearables interface (buttons) to send replies, like such as acknowledging, accepting, or
declining tasks related to the events/alarms.

These wearables need to include sub GHz RF communications interfaces, such as LoRA
or other available technologies, to by-pass floor plant RF bands blacklisting and company
regulations. The technology and development chosen may be used in other devices apart
from wearables, such as PLCs, based on use case requirements, with a subset or
restricted functionalities (display or user interaction).

7.6.2 Functions / Features

The functions and features of the zAlarm application are the following:

• Receive Alarm: The zAlarm application enables special zAssets, such as wearables,
to receive alarm events with associated tasks

• Accept alarm task: The device that receives the alarm event can acknowledge the
reception of the message and accept the associated task.

• Decline Alarm task: The device that receives the alarm event can acknowledge the
reception of the message but decline or reject the associated task, therefore
triggering the zAlarm to send the event to another candidate destination.

• Automatic expiration and resend of alarm: given the need to reduce downtime and
speed-up the response to alarms, if the destination of the alarm and associated task
does not respond (either accepting or declining), zAlarm must react cancelling the
alarms with pending response within a given time, and reopen (resend) the alarm to
another potential candidate. It must also inform the previous recipient that the task
has been cancelled, to avoid duplicity of tasks.

Subtask Subtask description
ZA001
Distribution of Alarm
events

Priority: Must

Who: zAlarm app in runtime platform
When: On detection of alarm situation or maintenance event
Where: Anywhere
What: Send alarm with associated task details to a user/device
Why: Improve response time to alarms and events

Acceptance Criteria A wearable physical device (or any other ZDMP asset) has received an alarm
addressed to it.

Requirements fulfilled RQ_0035, RQ_0036, RQ_0037, RQ_0038, RQ_0039, RQ_0047, RQ_0089, RQ_0105, RQ_0106,
RQ_0107, RQ_0108, RQ_0109, RQ_0110, RQ_0145, RQ_0147, RQ_0148, RQ_0149, RQ_0150

ZA002
Acceptance of alarm
task event

Priority: Must

Who: Physical devices, wearables
When: Availability of user to respond to the alarm is positive
Where: Anywhere
What: Send positive acknowledgement with associated task details to a the
zAlarm app in runtime platform
Why: Improve response time to alarms and events

Acceptance Criteria zAlarm app receives a confirmation of acceptance of alarm task

Requirements fulfilled N/A

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 270 / 334

ZA003
Task Acceptance
management

Priority: Must

Who: zAlarm app
When: On receiving acceptance response from one recipient for a given task
Where: Runtime platform, anywhere
What: Mark task as assigned and inform all other recipients to stand by.
Why: Improve response time to alarms and events

Acceptance Criteria All other recipients (if any) receive a task cancellation message, and zAlarm has
marked task as assigned.

Requirements fulfilled N/A

ZA004
Rejection of alarm
task event

Priority: Must

Who: Physical devices, wearables
When: Availability of user to respond to the alarm is positive
Where: Anywhere
What: Send negative acknowledgement with associated task details to a the
zAlarm app in runtime platform
Why: Improve response time to alarms and events

Acceptance Criteria zAlarm app receives a confirmation of rejection of alarm task

Requirements fulfilled N/A

ZA005
Task Rejection
management

Priority: Must

Who: zAlarm app in runtime platform
When: On receiving rejection response from all recipients for a given task
Where: Runtime platform, anywhere
What: Request details of other available users’ candidates for receiving the task
and resend alarm
Why: Improve response time to alarms and events

Acceptance Criteria The zAlarm app has detected that rejection messages have been received from
all (may be one or many) users for a given task and triggers a new distribution of
alarm event.

Requirements fulfilled RQ_0035, RQ_0036, RQ_0037, RQ_0038, RQ_0039, RQ_0047, RQ_0089, RQ_0105, RQ_0106,
RQ_0107, RQ_0108, RQ_0109, RQ_0110, RQ_0145, RQ_0147, RQ_0148, RQ_0149, RQ_0150

ZA006
Alarm event timeout

Priority: Must

Who: zAlarm app in runtime platform
When: On expired timer after sending an alarm event to a wearable
Where: Runtime platform, anywhere
What: Request details of other available users’ candidates for receiving the task
and resend alarm
Why: Improve response time to alarms and events

Acceptance Criteria The zAlarm app has detected that no confirmation (positive or negative) has
been received within the configured response time window and triggers a new
distribution of alarm event.

Requirements fulfilled RQ_0035, RQ_0036, RQ_0037, RQ_0038, RQ_0039, RQ_0047, RQ_0089, RQ_0105, RQ_0106,
RQ_0107, RQ_0108, RQ_0109, RQ_0110, RQ_0145, RQ_0147, RQ_0148, RQ_0149, RQ_0150

Figure 249: zA1.03 Functions

7.6.3 Workflows

 Distribution of Alarm events and acceptance task organization

The zAlarm provides ZDMP Assets with the possibility to receive alarm events with
associated task details. These events and task are generated in the ZDMP
zAnomalyDetector application, and then sent to physical devices such as wearables to
ensure users wandering around in the floor plant receive the alarms. zAlarm application
assumes an alarm with associated task details and a chosen recipient is provided. The
recommendation is to send such event to only one or reduced number or recipients, to
avoid collisions and duplicity of tasks assigned. Devices have the possibility to accept or

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 271 / 334

decline tasks. Task rejection or failing to reply in time triggers the zAlarm to request
another candidate recipient and resending the event.

The main steps / functionalities are:

• The zAlarm app receives an alarm event from the zAnomalyDetector and relays it to
the corresponding recipient (or group), a user with a wearable, in the floor plant.

• The user decides to whether to accept or decline the responding to the alarm event, by
sending a reply to the zAlarm.

Figure 250: zAlarm Default Workflow

• If the alarm was sent only to one user and the task is accepted, it is marked as
assigned. If it was sent to a group of users, zAlarm waits for the first user that accepts
to assign the task and inform other users that this alarm is already addressed.

Figure 251: zAlarm Alternative Workflow

• If the alarm was sent only to one user and the task is rejected, zAlarm resends the
alarm to another recipient. If it was sent to a group of users, zAlarm waits until
receiving rejection messages from all of them or timeout occurs, before resending the
alarm to different recipients.

• If all the users fail to reply after a configured time, zAlarm selects another user or
group, and sends the alarm task again.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 272 / 334

Figure 252: zAalarm Workflow Alternative User Response

7.7 Steel Tubes: Production Monitor (zA4.01-zA4.04)

7.7.1 Overall functional characterization & Context

The demand for a new solution to improve the manufacturing of steel tubes led to the
creation of zApps. With the purpose to reduce and minimize the cost, and improve the
steel tube production, the following zApps are created:

• zA4.01: zSteelSheetWidthMonitor: To automatically detect the width of the steel
sheet to detect if the width of the sheet varies over time

• zA4.02: zHorizontalWeldDetection: To automatically detect the horizontal weld of the
steel sheet; this welding is made to connect the different steel coils to each other for
production to continue uninterrupted

• zA4.03: zVerticalWeldMonitor: To automatically detect the quality of the vertical weld
of the steel sheet. In a situation where the vertical welding has a defect, it causes the
final product to be defective

• zA4.04: zShapeTubeMonitor: To automatically detect the conformity of the tube
shape

7.7.2 Functions / Features

Subtask Subtask description
UC41A001
Set production details

Priority: Must

Who: User
When: In run-time
Where: Cloud
What: The User sets the details about what is about to be produced
Why: The system must know how to aggregate the data that is being
collected into specific production relationships

Acceptance Criteria The User sets the details about what is about to be produced

Requirements filled N/A

UC41A002 Priority: Could

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 273 / 334

Import production details Who: User
When: In run-time
Where: Cloud
What: The User imports a custom file to set the details about what is about
to be produced
Why: When the information already exists in the enterprise, the ability to
import it will improve usability

Acceptance Criteria The User imports a custom file to set the details about what is about to be
produced

Requirements filled N/A

UC41A003
Save production details

Priority: Should

Who: User
When: In run-time
Where: Cloud
What: After the User sets the production details, they are saved into
storage
Why: To enable historical data and to provide means for state recovery

Acceptance Criteria After the User sets the production details, they are saved into storage

Requirements filled N/A

UC41A004
Load production details
preset

Priority: Should

Who: User
When: In run-time
Where: Cloud
What: The User browses and sets the details about what is about to be
produced from a list of previously stored presets
Why: When the information already exists in Storage, the ability to load it
will improve usability

Acceptance Criteria The User browses and sets the details about what is about to be produced
from a list of previously stored presets

Requirements filled N/A

UC41A005
Multilingual support

Priority: Must

Who: User
When: In run-time
Where: Cloud
What: The ability to switch between languages for the user interface
Why: The user interface must accommodate local dialects

Acceptance Criteria The ability to switch between languages for the user interface

Requirements filled N/A

UC41A006
Ability to select a zApp
from a centralized view

Priority: Should

Who: User
When: In run-time
Where: Cloud
What: The user can select available zApps for his role
Why: The user interface should provide a straightforward way to display
and access all features

Acceptance Criteria The user can select available zApps for his role

Requirements filled N/A

UC41A007
Role based access
control

Priority: Must

Who: User
When: In run-time
Where: Cloud
What: The platform controls the user access to zApps according to
registered users and user roles (Administrator, Project Manager, Operator)
Why: The platform must be able to provide or deny access to zApps
according to user and roles

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 274 / 334

Acceptance Criteria The platform controls the user access to zApps according to registered
users and user roles (Administrator, Project Manager, Operator)

Requirements filled N/A

UC41A008
Manage access control

Priority: Must

Who: User
When: In run-time
Where: Cloud
What: The User (Administrator) can create, delete, or update users,
including attributing roles (Administrator, Project Manager, Operator)
Why: The zApp or functional parts of the zApp must be restricted to specific
users and according to a user role. The role of Administrator should be able
to modify the dataset of allowed users

Acceptance Criteria The User (Administrator) can create, delete, or update users, including
attributing roles (Administrator, Project Manager, Operator)

Requirements filled N/A

UC41A009
Set production
parameters

Priority: Must

Who: User
When: In run-time
Where: Cloud
What: The User sets the detection parameters for the sensor, adequate to
current production
Why: Depending on the desired end product, the parameters for non-
conformant material differs. The user needs to adjust accordingly

Acceptance Criteria The User sets the detection parameters for the sensor, adequate to current
production

Requirements filled N/A

UC41A010
Import production
parameters

Priority: Could

Who: User
When: In run-time
Where: Cloud
What: The User imports a custom file to set the detection parameters in
respect to what is about to be produced
Why: When the information already exists in the enterprise, the ability to
import it will improve usability

Acceptance Criteria The User imports a custom file to set the detection parameters in respect to
what is about to be produced

Requirements filled N/A

UC41A011
Save production
parameters

Priority: Should

Who: User
When: In run-time
Where: Cloud, in the user interface
What: After the user sets the detection parameters for the sensor, they are
saved into storage
Why: To enable historical data and to provide means for state recovery

Acceptance Criteria After the user sets the detection parameters for the sensor, they are saved
into storage

Requirements filled N/A

UC41A012
Load production
parameters pre-set

Priority: Should

Who: User
When: In run-time
Where: Cloud, in the user interface
What: The User browses and sets the detection parameters for the sensor,
adequate to current production, from a list of previously saved pre-sets
Why: When the information already exists in Storage, the ability to load it
will improve usability

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 275 / 334

Acceptance Criteria The User browses and sets the detection parameters for the sensor,
adequate to current production, from a list of previously saved pre-sets

Requirements filled N/A

UC41A013
Set production status

Priority: Must

Who: User
When: In run-time
Where: Cloud, in the user interface
What: The user can set the production status to Started, Paused or
Stopped
Why: To avoid collecting and processing unnecessary data, data is
discarded when production is not active

Acceptance Criteria The user can set the production status to Started, Paused or Stopped

Requirements filled N/A

UC41A014
Trigger alarm on non-
conformity

Priority: Must

Who: Non-destructive Inspection
When: In run-time
Where: Edge
What: When the detection agent detects a non-conformity on data from a
sensor it triggers an alarm
Why: To minimize the time between an error occurring and the user's
response, an alarm must be triggered as soon as possible

Acceptance Criteria When the detection agent detects a non-conformity on data from a sensor it
triggers an alarm

Requirements filled N/A

UC41A015
Alarm data is sent to
platform

Priority: Should

Who: Non-destructive Inspection
When: In run-time
Where: Edge
What: When the detection agent detects a non-conformity on data from a
sensor, it sends the alarm information to the zApp Service
Why: When non-conformities are detected on the factory floor, the platform
should know about it

Acceptance Criteria When the detection agent detects a non-conformity on data from a sensor,
it sends the alarm information to the zApp Service

Requirements filled N/A

UC41A016
Send Notification to zApp
UI of relevant users on
non-conformity

Priority: Could

Who: zApp Service
When: In run-time
Where: Cloud
What: When an alarm is received from the premises, a notification is sent to
registered users
Why: To maintain team members farther from the factory floor informed, an
alarm is sent to the zApp UI

Acceptance Criteria When an alarm is received from the premises, a notification is sent to
registered users

Requirements filled N/A

UC41A017
Save alarm data

Priority: Could

Who: zApp Service
When: In run-time
Where: Cloud
What: When an alarm is received from the premises, it is stored and
associated with the current production
Why: To maintain historical data

Acceptance Criteria When an alarm is received from the premises, it is stored and associated
with the current production

Requirements filled N/A

UC41A018 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 276 / 334

Collect data from sensor Who: Data acquisition
When: In run-time
Where: Edge
What: Data is collected from sensor for analysis
Why: The data needs to be extracted from the sensor to be further
exploited

Acceptance Criteria Data is collected from sensor for analysis

Requirements filled N/A

UC41A019
Send sensor data for
analysis

Priority: Must

Who: Data acquisition
When: In run-time
Where: Edge
What: Data collected from sensor is sent to non-destructive inspection to
detect non-conformities
Why: The collected data needs to be analysed

Acceptance Criteria Data collected from sensor is sent to non-destructive inspection to detect
non-conformities

Requirements filled N/A

UC41A020
Upload sensor data

Priority: Could

Who: Data acquisition
When: In run-time
Where: Edge
What: Data collected from sensor is sent to the ZDMP platform
Why: The data is stored for historical consultation

Acceptance Criteria Data collected from sensor is sent to the ZDMP platform

Requirements filled N/A

UC41A021
Save sensor data

Priority: Could

Who: zApp Service
When: In run-time
Where: Cloud
What: When data produced by the sensors is received from the premises, it
is stored and associated with the current production
Why: To maintain historical data

Acceptance Criteria When data produced by the sensors is received from the premises, it is
stored and associated with the current production

Requirements filled N/A

UC41A022
Trigger alarm on
sampling required

Priority: Must

Who: zApp Service
When: In run-time
Where: Cloud
What: An alarm is triggered periodically for sample testing
Why: The product requires to be sample tested at intervals for QA

Acceptance Criteria An alarm is triggered periodically for sample testing

Requirements filled N/A

UC41A023
Submit sampling result

Priority: Must

Who: User
When: In run-time
Where: Cloud
What: The user submits the testing result
Why: The product must have all its sample testing associated

Acceptance Criteria The user submits the testing result

Requirements filled N/A

UC41A024 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 277 / 334

Set sampling interval Who: User
When: In run-time
Where: Cloud
What: The user sets the sampling interval
Why: The user must be able to configure the required sampling interval for
testing

Acceptance Criteria The user sets the sampling interval

Requirements filled N/A

UC41A025
Send Notification to zApp
UI of relevant users on
sample testing

Priority: Could

Who: zApp Service
When: In run-time
Where: Cloud
What: A notification is sent periodically for sample testing
Why: The product requires to be sample tested at intervals for QA.
Notifying on the zApp increases visibility

Acceptance Criteria A notification is sent periodically for sample testing

Requirements filled N/A

UC41A026
Consult and browse
historical sensor data

Priority: Could

Who: User
When: In run-time
Where: Cloud
What: The user can browse historical sensor data
Why: To maintain a clear perspective of the production history

Acceptance Criteria The user can browse historical sensor data

Requirements filled N/A

UC41A027
Consult and browse
historical alarm data

Priority: Could

Who: User
When: In run-time
Where: Cloud
What: The user can browse historical alarm data
Why: To maintain a clear perspective of the production history

Acceptance Criteria The user can browse historical alarm data

Requirements filled N/A

UC41A028
Consult and browse
historical production
details

Priority: Could

Who: User
When: In run-time
Where: Cloud
What: The user can browse historical production data
Why: To maintain a clear perspective of the production history

Acceptance Criteria The user can browse historical production data

Requirements filled N/A

Figure 253: zA4.01-zA4.04 Functions

7.7.3 Workflows

Two main workflows of non-trivial cases were identified, transversal to all the
implementable zApps. The first workflow pertains to data collection in the context of non-
conformity detection. That workflow is described in the following sequence diagram.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 278 / 334

Figure 254: Data collection in the context of non-conformity detection

Figure 255: Repeatable warning regarding product sampling

The second workflow identified pertains to the repeatable warning regarding product
sampling. That workflow is described in the following sequence diagram.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 279 / 334

7.8 Stones Tiles: Equipment Wear Detection (zA4.05-4.09)

Stone cutting is a complex process involving several tools and typically is a time-
consuming process, which depends on properties, type, and topography of stones. Stone
is a natural material, with intrinsic complexity, and it is difficult for operators to control the
quality along the processing phases. Thus, the use case 4.2 Detection Stone Tiles
Equipment Wear aims to analyse and study the entire stone cutting process to optimize
the stone cutting process and minimize costs and wastes.

Therefore, based on D2.3 - Industry Scenarios and Use Case and analysing the stone
cutting process, four zApps are designed. These zApps intends to integrate various stages
of stone cutting process and optimize and minimize the waste at each stage.

7.8.1 Overall functional characterization & Context

To optimize the entire stone cutting process four zApps are designed:

• zA4.05: zWiresMonitor: Aims to monitor the wire positions of the stone block cutting
machine. This zApp is implemented in the first stage of stone cutting and aims to
improve this stage by identifying and detecting anomalies in the cutting wires. It is
expected that zWiresMonitor can detect broken wires or irregular wire movements.

• zA4.07: zDetectDefects: Allows the automatic detection of defects in stone slabs.
Until now, the stone defect detection is a manual procedure executed by an operator.
With the implementation of this zApp, the goal is to automatically detect defects in
stone slabs. In this zApp the stone slabs analysis and automatic classification of
stone defects are expected.

• zA4.08: zWornOutBladeDetection: Automatically identifies worn out blades during the
stone slabs cutting process. This zApp aims to monitor the stone slab cutting
machine to avoid possible anomalies during stone cutting.

• zA4.09: zTilesConformity: Aims to evaluate the compliance of final product (stone
tiles). In this zApp, stone tiles are evaluated, and their compliance is verified against
standard stone tile models.

7.8.2 Functions / Features

Subtask Subtask description
UC41A001
Set production details

Priority: Must

Who: User
When: In run-time
Where: Cloud
What: The User sets the details about what is about to be produced
Why: The system must know how to aggregate the data that is being collected into
specific production relationships

Acceptance Criteria The User sets the details about what is about to be produced

Requirements filled N/A

UC41A002
Save production details

Priority: Should

Who: User
When: In run-time
Where: Cloud
What: After the User sets the production details, they are saved into storage
Why: To enable historical data and to provide means for state recovery

Acceptance Criteria After the User sets the production details, they are saved into storage

Requirements filled N/A

UC41A003 Priority: Should

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 280 / 334

Load production details
preset

Who: User
When: In run-time
Where: Cloud
What: The User browses and sets the details about what is about to be produced
from a list of previously stored presets
Why: When the information already exists in Storage, the ability to load it will
improve usability

Acceptance Criteria The User browses and sets the details about what is about to be produced from a
list of previously stored presets

Requirements filled N/A

UC41A004
Multilingual support

Priority: Must

Who: User
When: In run-time
Where: Cloud
What: The ability to switch between languages for the user interface
Why: The user interface must accommodate local dialects

Acceptance Criteria The ability to switch between languages for the user interface

Requirements filled N/A

UC41A005
Ability to select a zApp
from a centralized view

Priority: Should

Who: User
When: In run-time
Where: Cloud
What: The user can select available zApps for his role
Why: The user interface should provide a straightforward way to display and access
all features

Acceptance Criteria The user can select available zApps for his role

Requirements filled N/A

UC41A006
Role based access
control

Priority: Must

Who: User
When: In run-time
Where: Cloud
What: The platform controls the user access to zApps according to registered users
and user roles (Administrator, Project Manager, Operator)
Why: The platform must be able to provide or deny access to zApps according to
user and roles

Acceptance Criteria The platform controls the user access to zApps according to registered users and
user roles (Administrator, Project Manager, Operator)

Requirements filled N/A

UC41A007
Manage access control

Priority: Must

Who: User
When: In run-time
Where: Cloud
What: The User (Administrator) can create, delete, or update users, including
attributing roles (Administrator, Project Manager, Operator)
Why: The zApp or functional parts of the zApp must be restricted to specific users
and according to a user role. The role of Administrator should be able to modify the
dataset of allowed users

Acceptance Criteria The User (Administrator) can create, delete, or update users, including attributing
roles (Administrator, Project Manager, Operator)

Requirements filled N/A

UC41A008 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 281 / 334

Set production
parameters

Who: User
When: In run-time
Where: Cloud
What: The User sets the detection parameters for the sensor, adequate to current
production
Why: Depending on the desired end product, the parameters for non-conformant
material differs. The user needs to adjust accordingly

Acceptance Criteria The User sets the detection parameters for the sensor, adequate to current
production

Requirements filled N/A

UC41A009
Import production
parameters

Priority Could

Who: User
When: In run-time
Where: Cloud
What: The User imports a custom file to set the detection parameters in respect to
what is about to be produced
Why: When the information already exists in the enterprise, the ability to import it
will improve usability

Acceptance Criteria The User imports a custom file to set the detection parameters in respect to what is
about to be produced

Requirements filled N/A

UC41A010
Save production
parameters

Priority: Should

Who: User
When: In run-time
Where: Cloud, in the user interface
What: After the user sets the detection parameters for the sensor, they are saved
into storage
Why: To enable historical data and to provide means for state recovery

Acceptance Criteria After the user sets the detection parameters for the sensor, they are saved into
storage

Requirements filled N/A

UC41A011
Load production
parameters pre-set

Priority: Should

Who: User
When: In run-time
Where: Cloud, in the user interface
What: The User browses and sets the detection parameters for the sensor,
adequate to current production, from a list of previously saved pre-sets
Why: When the information already exists in Storage, the ability to load it will
improve usability

Acceptance Criteria The User browses and sets the detection parameters for the sensor, adequate to
current production, from a list of previously saved pre-sets

Requirements filled N/A

UC41A012
Set production status

Priority: Must

Who: User
When: In run-time
Where: Cloud, in the user interface
What: The user can set the production status to Started, Paused or Stopped
Why: To avoid collecting and processing unnecessary data, data is discarded when
production is not active

Acceptance Criteria The user can set the production status to Started, Paused or Stopped

Requirements filled N/A

UC41A013 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 282 / 334

Trigger alarm on non-
conformity

Who: Non-destructive Inspection
When: In run-time
Where: Edge
What: When the detection agent detects a non-conformity on data from a sensor it
triggers an alarm
Why: To minimize the time between an error occurring and the user's response, an
alarm must be triggered as soon as possible

Acceptance Criteria When the detection agent detects a non-conformity on data from a sensor it triggers
an alarm

Requirements filled N/A

UC41A014
Alarm data is sent to
platform

Priority: Should

Who: Non-destructive Inspection
When: In run-time
Where: Edge
What: When the detection agent detects a non-conformity on data from a sensor, it
sends the alarm information to the zApp Service
Why: When non-conformities are detected on the factory floor, the platform should
know about it

Acceptance Criteria When the detection agent detects a non-conformity on data from a sensor, it sends
the alarm information to the zApp Service

Requirements filled N/A

UC41A015
Send Notification to
zApp UI of relevant
users on non-
conformity

Priority: Could

Who: zApp Service
When: In run-time
Where: Cloud
What: When an alarm is received from the premises, a notification is sent to
registered users
Why: To maintain team members farther from the factory floor informed, an alarm is
sent to the zApp UI

Acceptance Criteria When an alarm is received from the premises, a notification is sent to registered
users

Requirements filled N/A

UC41A016
Save alarm data

Priority: Could

Who: zApp Service
When: In run-time
Where: Cloud
What: When an alarm is received from the premises, it is stored and associated with
the current production
Why: To maintain historical data

Acceptance Criteria When an alarm is received from the premises, it is stored and associated with the
current production

Requirements filled N/A

UC41A017
Collect data from
sensor

Priority: Must

Who: Data acquisition
When: In run-time
Where: Edge
What: Data is collected from sensor for analysis
Why: The data needs to be extracted from the sensor to be further exploited

Acceptance Criteria Data is collected from sensor for analysis

Requirements filled N/A

UC41A018 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 283 / 334

Send sensor data for
analysis

Who: Data acquisition
When: In run-time
Where: Edge
What: Data collected from sensor is sent to non-destructive inspection to detect
non-conformities
Why: The collected data needs to be analysed

Acceptance Criteria Data collected from sensor is sent to non-destructive inspection to detect non-
conformities

Requirements filled N/A

UC41A019
Upload sensor data

Priority: Could

Who: Data acquisition
When: In run-time
Where: Edge
What: Data collected from sensor is sent to the ZDMP platform
Why: The data is stored for historical consultation

Acceptance Criteria Data collected from sensor is sent to the ZDMP platform

Requirements filled N/A

UC41A020
Save sensor data

Priority: Could

Who: zApp Service
When: In run-time
Where: Cloud
What: When data produced by the sensors is received from the premises, it is
stored and associated with the current production
Why: To maintain historical data

Acceptance Criteria When data produced by the sensors is received from the premises, it is stored and
associated with the current production

Requirements filled N/A

UC41A021
Validation production

Priority: Must

Who: User zApp Service
When: In run-time
Where: Edge
What: The user must be able to validate the results
Why: To avoid errors, the user must validate the results of automatic process

Acceptance Criteria The user must be able to validate the results

Requirements filled N/A

UC41A022
Send Notification to
zApp UI of relevant
users on sample testing

Priority: Could

Who: zApp Service
When: In run-time
Where: Cloud
What: A notification is sent periodically for sample testing
Why: The product requires to be sample tested at intervals for QA. Notifying on the
zApp increases visibility

Acceptance Criteria A notification is sent periodically for sample testing

Requirements filled N/A

UC41A023
Consult and browse
historical sensor data

Priority: Could

Who: User
When: In run-time
Where: Cloud
What: The user can browse historical sensor data
Why: To maintain a clear perspective of the production history

Acceptance Criteria The user can browse historical alarm data

Requirements filled N/A

UC41A024 Priority: Could

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 284 / 334

Consult and browse
historical alarm data

Who: User
When: In run-time
Where: Cloud
What: The user can browse historical alarm data
Why: To maintain a clear perspective of the production history

Acceptance Criteria The user can browse historical alarm data

Requirements filled N/A

UC41A025
Consult and browse
historical production
details

Priority: Could

Who: User
When: In run-time
Where: Cloud
What: The user can browse historical production data
Why: To maintain a clear perspective of the production history

Acceptance Criteria The user can browse historical production data

Requirements filled N/A

Figure 256: zA4.05-4.09 Functions

7.8.3 Workflows

In this section is exposed the sequential diagrams that represents all interactions between
components and users in each zApp. The sequential diagrams are divided by zApp and in
each of them the interactions between the components and users can be visualized.

 zWireMonitor and zWornOutBlade

The following diagram explains these zApps functions and the necessary interactions with
other components.

Figure 257: zWireMonitor and zWornOutBlade Sequence Diagram

 zDetectDefects

The following diagram explains this function and the necessary interactions with other
components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 285 / 334

Figure 258: zDetectDefect Sequence Diagram

 zTilesConformity

The following diagram explains this zApps function and the necessary interactions with
other components.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 286 / 334

Figure 259: zTilesConformity Sequence Diagram

7.9 zRemoteQC (zA4.10)

7.9.1 Overall functional characterization & Context

The objective of zRemoteQC is to allow access to and easy archiving of documentary
evidence of compliance regarding material including their specifications. This facilitates the
documentation assessment and the detection of potential errors, even before the supplies
leave the manufacturing facility. It will also allow the access to production quality control
records of the corresponding material lots if the user chooses to do so.

7.9.2 Functions / Features

Subtask Subtask description
zA4.10.001 Priority: Must

Role based access
control and feature
availability

Who: User
When: In run-time
Where: Cloud
What: The platform controls the user access to zApps and individual features
according to registered users and user roles (Administrator, Supplier, Works
Contractor, Supervisor)
Why: The platform must be able to provide or deny access to the zApps and
individual features according to user and roles to reflect different user roles
within the company

Acceptance Criteria A registered user with an allowable role can access a zApp or specific features,
and an unregistered user or with an unallowed role is unable to access a zApp
or specific features

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 287 / 334

Requirements filled N/A

zA4.10.002 Priority: Must

Manage access
control

Who: User
When: In run-time
Where: Cloud
What: The user (Administrator) can create, delete, or update users, including
attributing roles (Administrator, Supplier, Works Contractor, Supervisor)
Why: The users and roles need to be managed to reflect internal changes
within the company

Acceptance Criteria The user (Administrator) can create, delete, and update users. The User
(Administrator) can change the role of a user

Requirements filled N/A

zA4.10.003 Priority: Must

Creation and edition of
Works Contractors

Who: User
When: In run-time
Where: Cloud
What: The user (Supplier) can create a new or edit an existing Works
Contractor
Why: The user (Supplier) must be able to manage the existing dataset of
Works Contractors

Acceptance Criteria The user (Supplier) can create or edit Works Contractors

Requirements filled N/A

zA4.10.004 Priority: Must

Association of
materials to projects
and Works Contractor

Who: User
When: In run-time
Where: Cloud
What: The user (Supplier) can associate a new material to a project of a Works
Contractor
Why: The user (Supplier) must be able to associate the materials to the Works
Contractor

Acceptance Criteria The user (Supplier) can associate a new material to a project of a Works
Contractor

Requirements filled N/A

zA4.10.005 Priority: Must

Display detailed
information on
materials

Who: User
When: In run-time
Where: Cloud
What: The user (Supplier) can inspect lots of materials being supplied, offering
details in the form of documentation
Why: The user (Supplier) must be able to access a list of materials to supply or
already supplied

Acceptance Criteria The user (Supplier) can list and access detailed information of lots of materials
associated

Requirements filled N/A

zA4.10.006 Priority: Should

Collect information of
materials

Who: Data acquisition
When: In run-time
Where: Edge
What: The system can extract information regarding the production status of
materials from Suppliers' legacy systems and send it to the platform
Why: The system should be able to extract real-time production information
regarding specific materials

Acceptance Criteria The system can extract and store production information

Requirements filled N/A

zA4.10.007 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 288 / 334

Manage deliveries Who: User
When: In run-time
Where: Cloud
What: The user (Supplier) can view a delivery schedule per client, retrieve
detailed information for each order and assign a material to fulfil it
Why: The user (Supplier) will manage the delivery schedule for existent orders

Acceptance Criteria The user (Supplier) can view delivery schedule per client, retrieve detailed
information for each order and assign a material to fulfil it

Requirements filled N/A

zA4.10.008 Priority: Must

Authorize shipment Who: User
When: In run-time
Where: Cloud
What: The user (Supplier) can authorize shipment of a fulfilled order
Why: The user (Supplier) will manage the shipment

Acceptance Criteria The user (Supplier) can authorize a shipment

Requirements filled N/A

zA4.10.009 Priority: Should

Consult messages Who: User
When: In run-time
Where: Cloud
What: The user can access a list of received messages and read them
Why: The user will be notified of actions in the system and a system for
displaying them is required

Acceptance Criteria The user can access a list of notifications and read its content

Requirements filled N/A

Figure 260: zRemoteQC Functions

7.10 zRescheduler (zA4.11)

7.10.1 Overall functional characterization & Context

The objective of zRemoteQC is to allow access to and easy archiving of documentary
evidence of compliance regarding material including their specifications. This facilitates the
documentation assessment and the detection of potential errors, even before the supplies
leave the manufacturing facility. It will also allow the access to production quality control
records of the corresponding material lots if the user chooses to do so.

7.10.2 Functions / Features

Subtask Subtask description
zA4.11.001 Priority: Must

Role based access
control and feature
availability

Who: User
When: In run-time
Where: Cloud
What: The platform controls the user access to zApps and individual features
according to registered users and user roles (Administrator, Supplier, Works
Contractor, Supervisor)
Why: The platform must be able to provide or deny access to the zApps and
individual features according to user and roles to reflect different user roles
within the company

Acceptance Criteria A registered user with an allowable role can access a zApp or specific
features, and an unregistered user or with an unallowed role is unable to
access a zApp or specific features

Requirements filled N/A

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 289 / 334

zA4.11.002 Priority: Must

Manage access control Who: User
When: In run-time
Where: Cloud
What: The user (Administrator) can create, delete, or update users, including
attributing roles (Administrator, Supplier, Works Contractor, Supervisor)
Why: The users and roles need to be managed to reflect internal changes
within the company

Acceptance Criteria The user (Administrator) can create, delete, and update users. The User
(Administrator) can change the role of a user

Requirements filled N/A

zA4.11.003 Priority: Must

Works Contractor
consults messages

Who: User
When: In run-time
Where: Cloud
What: The user (Works Contractor) can access messages regarding delivery
dates
Why: The user needs to be contacted regarding delivery date changes to
have an up to date delivery calendar

Acceptance Criteria The user can list and read messages

Requirements filled N/A

zA4.11.004 Priority: Must

Works Contractor
performs a reschedule

Who: User
When: In run-time
Where: Cloud
What: The user (Works Contractor), given a change in delivery date,
performs a rescheduling
Why: When delivery dates change, the project calendar must update
accordingly

Acceptance Criteria The user can perform a rescheduling

Requirements filled N/A

zA4.11.005 Priority: Must

Works Supervisor
consults messages

Who: User
When: In run-time
Where: Cloud
What: The user (Works Supervisor) can access messages regarding
schedule changes
Why: The users need to be aware of schedule changes

Acceptance Criteria The user can list and read messages

Requirements filled N/A

zA4.11.006 Priority: Must

Works Supervisor
approves/disapproves a
new schedule

Who: User
When: In run-time
Where: Cloud
What: The user (Works Supervisor) can approve or disapprove a schedule
Why: The users need to be able to approve or disapprove changes to the
schedule

Acceptance Criteria The user can approve or disapprove a new schedule and that choice is
respected

Requirements filled N/A

zA4.11.007 Priority: Must

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 290 / 334

Supplier reports a delay Who: User
When: In run-time
Where: Cloud
What: The user (Supplier) reports a delay for a delivery
Why: To maintain a consistent schedule, the zApp needs to be aware of
changes in deliveries

Acceptance Criteria The user can submit a delay

Requirements filled N/A

zA4.11.008 Priority: Must

Supplier reports delivery Who: User
When: In run-time
Where: Cloud
What: The user (Supplier) reports a delivery has been completed
Why: To maintain a consistent schedule, the zApp needs to be aware of
changes in deliveries

Acceptance Criteria The user can submit the delivery completion

Requirements filled N/A

zA4.11.009 Priority: Should

User imports, exports
legacy system data

Who: User
When: In run-time
Where: Cloud
What: The user (Works Contractor and Works Supervisor) imports data in
MS Project and MS Excel regarding scheduling. The data is exported back to
the system on change
Why: The organisation uses its internal system for keeping an up to date
schedule. Connecting it with the platform would improve utility

Acceptance Criteria The user can import MS Excel and MS Project files into the platform. When
changes occur in the platform, they are exported back to the organisation

Requirements filled N/A

Figure 261: zRescheduler zA 4.11 Functions

7.11 zMaterialTracker (zA4.12)

7.11.1 Overall functional characterization & Context

The objective of zMaterialTracker is to allow the recording of the use of a specific material
at a specific location, and based on that, to allow access to all the documentation related
to that specific material, be it construction records, quality control records, shipment
records or production control records.

7.11.2 Functions / Features

Subtask Subtask description
zA4.12.001 Priority: Must

Role based access
control and feature
availability

Who: User
When: In run-time
Where: Cloud
What: The platform controls the user access to zApps and individual features
according to registered users and user roles (Administrator, Supplier, Works
Contractor, Supervisor)
Why: The platform must be able to provide or deny access to the zApps and
individual features according to user and roles to reflect different user roles within
the company

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 291 / 334

Acceptance Criteria A registered user with an allowable role can access a zApp or specific features,
and an unregistered user or with an unallowed role is unable to access a zApp or
specific features

Requirements filled N/A

zA4.12.002 Priority: Must

Manage access
control

Who: User
When: In run-time
Where: Cloud
What: The user (Administrator) can create, delete, or update users, including
attributing roles (Administrator, Supplier, Works Contractor, Supervisor)
Why: The users and roles need to be managed to reflect internal changes within
the company

Acceptance Criteria The user (Administrator) can create, delete, and update users. The User
(Administrator) can change the role of a user

Requirements filled N/A

zA4.12.003 Priority: Must

User imports
drawing files

Who: User
When: In run-time
Where: Cloud
What: The user (Works Contractor, Works Supervisor) imports drawings from
the legacy systems
Why: The legacy systems contain drawings related to projects that need to be
imported in ordered to be referenced

Acceptance Criteria The user can import drawings into the platform and the platform understands the
different areas described in the drawings

Requirements filled N/A

zA4.12.004 Priority: Must

User associates a
material with a
section

Who: User
When: In run-time
Where: Cloud
What: The user (Works Contractor, Works Supervisor) selects a section
reference and associates an existent material for application
Why: To control the application of materials they must be positioned accurately
and accounted for

Acceptance Criteria The user can reference a material to a location

Requirements filled N/A

zA4.12.005 Priority: Should

User can visually
select a location in a
drawing

Who: User
When: In run-time
Where: Cloud
What: The user (Works Contractor, Works Supervisor) selects a section
reference from a visual representation
Why: To facilitate user perception, visual tools will be offered

Acceptance Criteria The user can select a section reference from a visual representation

Requirements filled N/A

zA4.12.006 Priority: Should

User imports PDF,
Excel, and Word files

Who: User
When: In run-time
Where: Cloud
What: The user (Works Contractor, Works Supervisor) imports files from the
legacy systems containing information regarding the materials
Why: To maintain an overall view of all the documentation related to a material,
information needs to be imported

Acceptance Criteria The user can import files into the platform related to a material

Requirements filled N/A

zA4.12.007 Priority: Should

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 292 / 334

User browses
location and material
information

Who: User
When: In run-time
Where: Cloud
What: The user (Works Contractor, Works Supervisor) browses the materials
and locations in the system and can search for any information
Why: To facilitate inspection of applied materials, it should be easy to locate it
from either vector

Acceptance Criteria
The user can find information related to a material either by searching for it
directly or from a location

Requirements filled N/A

Figure 262: zA4.12 Functions

7.12 zMaterialID (zA4.13)

7.12.1 Overall functional characterization & Context

The purpose of zMaterialID is to create an identification system capable of creating a
unique identifier for varied materials and corresponding quality control information.
Through this identifier the materials will be traceable throughout the production process

7.12.2 Functions / Features

Subtask Subtask description
zA4.13.001 Priority: Must

Role based access
control and feature
availability

Who: User
When: In run-time
Where: Cloud
What: The platform controls the user access to zApps and individual features
according to registered users and user roles (Administrator, Supplier, Works
Contractor, Supervisor)
Why: The platform must be able to provide or deny access to the zApps and
individual features according to user and roles to reflect different user roles within
the company

Acceptance Criteria A registered user with an allowable role can access a zApp or specific features,
and an unregistered user or with an unallowed role is unable to access a zApp or
specific features

Requirements filled N/A

zA4.13.002 Priority: Must

Manage access
control

Who: User
When: In run-time
Where: Cloud
What: The user (Administrator) can create, delete, or update users, including
attributing roles (Administrator, Supplier, Works Contractor, Supervisor)
Why: The users and roles need to be managed to reflect internal changes within
the company

Acceptance Criteria The user (Administrator) can create, delete, and update users. The User
(Administrator) can change the role of a user

Requirements filled N/A

zA4.13.003 Priority: Should

User imports
material id

Who: User
When: In run-time
Where: Cloud
What: The user (Supplier) imports from his legacy system the id related to a
material
Why: The user must supply the system with an id related to produced material. If
the legacy system already contains such id, it might be less prone to errors

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 293 / 334

Acceptance Criteria The user can select and upload an id from his legacy system into the platform

Requirements filled N/A

zA4.13.004 Priority: Must

User defines
material id

Who: User
When: In run-time
Where: Cloud
What: The user (Supplier) defines manually the id related to a material
Why: The user must supply the system with an id related to produced material

Acceptance Criteria The user can define an id for a material

Requirements filled N/A

zA4.13.005 Priority: Should

User inspects
material id

Who: User
When: In run-time
Where: Cloud
What: The user (Supplier) can inspect and browse the materials already in the
system
Why: The user might need to have an overarching view of the current production
status within the system

Acceptance Criteria The user can find the information for any material already in the system

Requirements filled N/A

Figure 263: zA4.13 Functions

7.13 zXRAYMonitor & Analytics (zA3.01 & zA3.02)

7.13.1 Overall functional characterization & Context

zXRAYMonitor and zXRAYAnaytics are two applications that aim to improve the
maintenance and operations of an X-Ray test unit. Hence, this section describes both
applications together for the sake of clarity. zXRAYMonitor facilitates the correct execution
of the tests planned for a specific product in an inspection unit. The test unit conducts tests
based on X-ray Computed Tomography (CT) technology. The application detects the
product type of the product under test via a barcode reader or RFID reader. Barcodes or
RFID tags encode the part number: A unique identifier for the product type. When the
product type is identified, the application loads the parameters for the product type into the
testing unit. The X-ray inspection unit is used to characterise specific properties of the
product (like properties of the materials). Thus, for example, the application can be used to
set up the threshold parameters that determine the tests for a property of a product type.
When the test unit has performed the test, the application collects and stores the tests
results together with the X-ray image generated by the X-ray inspection unit. Functions of
zXRAYMonitor are identified with ids zA3.01-9. Based on the information provided by
zXRAYMonitor, zXRAYAnalytics provides graphic dashboards showing statistical analysis
to the test engineer, so that the programming of the test unit can be further improved.

7.13.2 Functions / Features

• Data sources configuration: Backend function to configure the data sources used
to integrate master data. Master data includes product type information, and
inspection test information.

• Industrial data collection configuration: Backend function to configure the
connections to exchange data with the test unit control. The user can define different
industrial variables. Industrial variables are used to read the product instance part

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 294 / 334

number, load the X-ray inspection program parameters (eg thresholds for each
property), read the X-ray inspection unit results, and read the location of the X-ray.

• Product type configuration: Backend function to edit the properties and test
sequence for a specific product type. The user can select the product type and edit
the test sequence. For every test, the user can edit the configuration parameters of
the test. The configuration of a test consists of the write values and industrial
variables for the testing program parameters and the industrial variables used to
collect the results.

• Part number detection: To detect the product type unique identifier of the product
under test.

• Test unit preparation: To load the configuration parameters of the X-ray inspection
program for the product instance under test. This function consists in writing the
specified configuration values into the specified industrial variables using the
configured connections.

• Test detection: To detect the test being performed in the test unit

• Test unit results collection: To collect and store the results of the test unit, linked to
the configuration parameters, the product part type and the location of the X-ray
tomography image. This function consists in reading the specified industrial variables
using the configured connections.

• Results analysis: To make a detailed statistical analysis of the results, comparing
new measurements with historic data and analyse trends in material properties to
predict possible out-of-tolerance parts.

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
ZA3.01.1
Configure master data
sources

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User selects data sources (files, database connections) to integrate
master data
Why: To integrate master data information

Acceptance Criteria The user can create a new master data configuration
The user can create a new data source
The user can select data sources that have been previously configured in the
platform
The user can update a master data configuration with the selected data source
Master data provides access to product type information

Requirements filled RQ_0240, RQ_421

ZA3.01.2
Configure test unit
connection

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User configures a connection to the test unit control
Why: To configure the connection to the test unit control and enable data
exchange

Acceptance Criteria The user can create a new unit model
The user can edit the connection parameters
Optionally, the user could browse the field network to search for available
connections

Requirements filled RQ_0240, RQ_0288

ZA3.01.3 Priority: Should

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 295 / 334

Configure industrial
variables

Who: ZDMP consultant
What: User configures industrial variables
When / Where: During configuration (runtime), on premise
Why: To uniquely identify a test parameter in the test unit control program

Acceptance Criteria The user can create a new industrial variable
The user can specify the necessary parameters to read and write data from the
variable
The user can edit the model to specify which variables are used to read and write
test unit data
The user can select industrial variables that have been previously configured
The user can update the model with the selected variables

Requirements filled RQ_239, RQ_0240, RQ_421, RQ_0288

ZA3.01.4
Edit test configuration
of product type

Priority: Must

Who: Test Engineer
When / Where: During configuration (runtime), on premise
What: User selects a product type
Why: To edit the configuration of the test

Acceptance Criteria The user can edit the configuration
The user can select a product type from master data
The user can set the product type of the configuration

Requirements filled RQ_0240, RQ_245, RQ_0258, RQ_0288

ZA3.01.5
Edit test sequence
configuration

Priority: Must

Who: Test Engineer
When / Where: During configuration (runtime), on premise
What: User edits the configuration of the tests for a product type
Why: To specify the configuration of the tests for a product type

Acceptance Criteria The user can edit the test sequence of the configuration

Requirements filled RQ_0240, RQ_245, RQ_0258

ZA3.01.6
Set test configuration

Priority: Must

Who: Test Engineer
When / Where: During configuration (runtime), on premise
What: User sets the configuration of a specific test
Why: To specify the values of the test program parameters and where to read
the results

Acceptance Criteria The user can create a test configuration for a product type
The test configuration has a unique test identifier
The user can select an industrial variable to read the test identifier
The user can add a sample image
The user can add a write parameter to a test configuration to write the value of a
configuration parameter in the test unit
For every write parameter, the user can set a name
For every write parameter, the user can select an industrial variable to write the
parameter
For every write parameter, the user can set the value to write
For every write parameter, the user can set the industrial variable to write
The user can add a read parameter to a test configuration to read the value of
the part type or test result variable
For every read parameter, the user can set a name
For every read parameter, the user can set an industrial variable to read the
value from

Requirements filled RQ_0240, RQ_243, RQ_244, RQ_245, RQ_0253, RQ_0258

ZA3.01.7
Detect product type

Priority: Must

Who: Test unit data collection adapter
When / Where: Before the test unit starts the test sequence (runtime), in the test
unit
What: Read the part number of the product instance under test

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 296 / 334

Why: To detect which is the product type and load the right configuration
parameters

Acceptance Criteria The test unit model contains the parameters to connect to the test unit control
and exchange information
The test unit adapter can connect to the test unit control
The test unit adapter can publish data to exchange data with other components
The test unit adapter can update the test unit model with the topics of the
parameters to be exchanged
The test unit control is connected to a reader and stores the part number code in
the part number variable
The test unit adapter can read the part number variable control and publish the
part number code value in the configured read parameter

Requirements filled RQ_246

ZA3.01.8
Load configuration
parameters

Priority: Must

Who: Test unit data collection adapter
When / Where: Before the test unit starts the test sequence (runtime), in the test
unit
What: write the values of the test configuration parameters in the test unit control
program
Why: To configure the test unit for the product type

Acceptance Criteria The test unit adapter can get the variables and values to write for the product
type in the test unit model
The test unit adapter can write the values in the test unit control variables
indicated in the configuration

Requirements filled RQ_0239, RQ_0240, RQ_0248

ZA3.01.9
Test detection

Priority: Must

Who: Test unit data collection adapter
When / Where: When the test unit starts the test sequence (runtime), in the test
unit
What: Read the test performed in the test unit
Why: To know which is the test that the unit performed

Acceptance Criteria The test unit adapter can read the test unique identifier in the configured variable

Requirements filled RQ_0239

ZA3.01.10
Collect test results

Priority: Must

Who: Test unit data collection adapter
When / Where: When the test unit finishes a test (runtime), in the test unit
What: Read the test results
Why: To detect the test results

Acceptance Criteria The test unit adapter can read the test results in the configured variables
The test unit adapter should save the binary data of the X-Ray tomography
image in an image file in a network file system
The test unit adapter can publish the test results so that they can be accessed by
other applications
The test results should include a resource identifier of the X-Ray tomography
image
The test results may include the binary data of the X-Ray tomography image

Requirements filled RQ_0239, RQ_254

ZA3.01.11
Save test results

Priority: Must

Who: Application storage
When / Where: When the test unit starts the test sequence (runtime), in the test
unit
What: Save the test results
Why: To provide information and insights to the test engineer

Acceptance Criteria The test unit adapter can create a test record to store the results
The test record includes the parameters and values used for the test
The test record includes the product type
The test records include the test unique identifier

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 297 / 334

The test records should include the resource identifier of the X-Ray tomography
image

Requirements filled RQ_0239, RQ_249, RQ_0250, RQ_251, RQ_252, RQ_255, RQ_0256, RQ_0257, RQ_261

ZA3.02.1
Analyse results

Priority: Must

Who: Test engineer
When / Where: When the test engineer is optimising the test unit program, in the
test department
What: Analyse the results
Why: To further improve the test program

Acceptance Criteria The test engineer can set parameters to filter data and configure analytics
Product quality prediction can use test results records as inputs
Product quality prediction can identify trends in the properties of the materials
and predict the properties of future batches
Product quality prediction can publish the results

Requirements filled RQ_0239, RQ_260, RQ_262, RQ_263, RQ_264 RQ_0268, RQ_0269, RQ_0270, RQ_0271,
RQ_0272, RQ_0273, RQ_0274

ZA3.02.2
Send notifications

Priority: Must

Who: Purchase department / Suppliers
When / Where: When the statistical analysis predicts a possible out-of-tolerance
part
What: Send an email notification
Why: To warn involved parties

Acceptance Criteria Monitoring and alerting can subscribe to analytic results
Monitoring and alerting can publish notifications when the results match the
configured rules
The test engineer can check statistical properties of the test results
The test engineer can check the correlation of the parameters and test results

Requirements filled RQ_0239, RQ_265, RQ_0266, RQ_0267, RQ_0275, RQ_277, RQ_0278, RQ_0279

Figure 264: zA3.01 & zA3.02 Functions

7.13.3 Workflows

 Low level configuration

This workflow sets up the application configuration parameters that are more integrated
into the ZDMP Platform, like data sources and connections to exchange data with
manufacturing assets. The main steps are:

• Configure data sources for master data

• Configure the connection to the test unit controller

• Configure the resource location of the variables that is used to exchange information
with the test unit controller

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 298 / 334

Figure 265: Low Level Configuration Sequence Diagram

 Test unit sequence configuration

This workflow sets up the configuration of the tests to be conducted for every product type.
The main steps are:

• Select product type

• Edit test sequence configuration

• Edit test configurations

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 299 / 334

Figure 266: Test Unit Sequence Configuration Sequence Diagram

 Test unit data exchange

This workflow manages all data exchange with the test unit. The main steps are:

• Detect product type

• Load configuration parameters

• Collect tests results

• Store tests results

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 300 / 334

Figure 267: Product Type Detection and Configuration Parameter Load

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 301 / 334

Figure 268: Test Results Collection and Storage

 Result Analysis

This workflow provides insights on the collected data. The main steps are:

• Analyse results

• Send notifications

Figure 269: Result Analysis Sequence Diagram

7.13.4 Additional Issues

Additional issues have appeared after the description of the functional specification.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 302 / 334

Issue Description Next Steps Lead
(Rationale)

Filled
Requirements

The following requirements with a “must“-priority
were targeted at different platform components,
but are specific to this application and thus
partially filled by its functions RQ_0241, RQ_0246,

RQ_0247, RQ_0248, RQ_0249, RQ_050, RQ_0251,
RQ_0252, RQ_0255, RQ_0262, RQ_0263, RQ_0264,
RQ_0265, RQ_0266, RQ_0267, RQ_0268, RQ_0269,
RQ_0270, RQ_0271, RQ_0272, RQ_0273, RQ_0274,
RQ_0277

Discuss with
requirement
providers who to
solve the issue

Product owner
UPV

7.14 zFeedbackMFT (zA3.03)

7.14.1 Overall functional characterization & Context

zFeedbackMFT enables the connection to a test unit to collect the results of manual tests.
In manual tests, the test unit drives the product under test (electronic component consisted
of a display, a set of LED indicators, and a set of controls) into the test configuration (eg
display showing a test image, activate controls to drive some LED indicators on, etc.) and
the operator pushes an actuator to indicate whether the unit is conformant with the test or
not. To make this decision, the operator uses a reference image and additional information
describing the status of the product under test when there are no failures. This information
is available in a user interface of the application. The user interface also shows an image
of the product in the test unit taken with an external vision interface.

7.14.2 Functions / Features

• Data sources configuration: Backend function to configure the data sources used
to integrate master data. Master data includes product type information, test
information, and reference images.

• Industrial data collection configuration: Backend function to configure the
connections to exchange data with the test unit control. The user can define different
industrial variables. Industrial variables are used to read the product instance part
number, the current test, and the manual test results (determined by the operator
through actuators).

• Product type configuration: Backend function to edit the properties and test
sequence for a specific product type. The user can select the product type and edit
the test sequence. For every test, the user can edit the configuration parameters of
the test. The configuration of a test consists industrial variables used to collect the
results.

• Part number detection: To detect the product type unique identifier of the product
under test.

• Test detection: To detect the test being performed in the test unit

• Test operator support: To present the information of the test to the operator in a
friendly user interface.

• Test unit results collection: To collect and store the results of the manual test unit
this function consists in reading the specified industrial variables representing the
status of the actuators pushed by the operator.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 303 / 334

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
ZA3.03.1
Configure master data
sources

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User selects data sources (files, database connections) to integrate
master data
Why: To integrate master data information

Acceptance Criteria The user can create a new master data configuration
The user can create a new data source
The user can select data sources that have been previously configured in the
platform
The user can update a master data configuration with the selected data source
Master data should include part type information
Master data should include manual test configuration

Requirements filled RQ_0281, RQ_0286

ZA3.03.2
Configure test unit
and camera
connection

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User configures a connection to the test unit control
Why: To enable data exchange

Acceptance Criteria The user can create a new unit model
The user can edit the connection parameters
Optionally, the user could browse the field network to search for available
connections

Requirements filled RQ_0281

ZA3.03.3
Configure industrial
variables

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User configures industrial variables
Why: To exchange data with the test unit control program

Acceptance Criteria The user can create a new industrial variable
The user can specify the necessary parameters to read and write data from the
variable
The user can edit the model to specify which variables are used to read and write
test unit data
The user can select industrial variables that have been previously configured
The user can update the model with the selected variables

Requirements filled RQ_0281

ZA3.03.4
Edit test configuration
of product type

Priority: Must

Who: Test Engineer
When / Where: During configuration (runtime), on premise
What: User selects a product type
Why: To edit the configuration of the test

Acceptance Criteria The user can edit the configuration
The user can select a product type from master data
The user can set the product type of the configuration

Requirements filled RQ_0281

ZA3.03.5
Edit test sequence
configuration

Priority: Must

Who: Test Engineer
When / Where: During configuration (runtime), on premise
What: User edits the configuration of the tests for a product type
Why: To specify the configuration of the tests for a product type

Acceptance Criteria The user can edit the test sequence configuration

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 304 / 334

Requirements filled RQ_0280, RQ_0281

ZA3.03.6
Set manual test
configuration

Priority: Must

Who: Test Engineer
When / Where: During configuration (runtime), on premise
What: User sets the configuration of a specific manual test
Why: To specify the location of the reference image and additional parameters to
support the operator

Acceptance Criteria The user can create a manual test
The manual test has a unique identifier
The user can set a name for the manual test
The user can assign a reference image to the manual test

Requirements filled RQ_0281, RQ_0282, RQ_0283, RQ_0284, RQ_0287

ZA3.03.7
Detect part number

Priority: Must

Who: Test unit adapter
When / Where: When the test unit starts the test sequence (runtime), in the test
unit
What: Detect the product part number of the product under test
Why: To determine the product type of the product under test

Acceptance Criteria The test unit model contains the parameters to connect to the test unit control
and exchange information
The test unit adapter can connect to the test unit control
The test unit adapter can publish data to exchange data with other components
The test unit adapter can update the test unit model with the topics of the
parameters to be exchanged
The test unit control is connected to a reader and stores the part number code in
the part number variable
The test unit adapter can read the part number variable control and publish the
part number code value in the configured read parameter

Requirements filled RQ_0295

ZA3.03.8
Detect current test

Priority: Must

Who: Test unit adapter
When / Where: When the test unit drives the test product to perform a manual
test (runtime), in the test unit
What: Detect the test that is conducted in the unit
Why: To determine the test unique identifier of the product test

Acceptance Criteria The test unit model contains the parameters to connect to the camera control
The test unit model contains the parameters to connect to the test unit control
The test unit adapter can connect to the camera control
The test unit adapter can publish in messaging the resource identifier of the
pictures
The test unit adapter can update the unit model with the topic of the resource
identifier of the image
The test unit adapter can connect to the test unit control
The test unit adapter can read the test unique identifier of a new test in the test
unit control
The test unit adapter can capture a new image when the new test is detected
The test unit adapter stores the image in a network file system in the field
network
The test unit adapter can publish a resource identifier for the image

Requirements filled RQ_0295, RQ_0289, RQ_0290, RQ_0291, RQ_0292, RQ_0293, RQ_0296

ZA3.03.9
Show current test
information

Priority: Must

Who: Operator
When / Where: When the operator is conducting the manual test
What: User visualises the text image and the additional information of the
manual test
Why: To conduct the manual test correctly

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 305 / 334

Acceptance Criteria The presentation backend can read the topics of the test identifier, the part
number, and the image resource identifier
The presentation backend can subscribe to these topics
The user can visualize the reference image associated to the current test
The user can visualize the camera image associated to the current test
The user can visualize the partNumber
The user can visualize the additional information parameters associated to the
test (via test identifier)

Requirements filled RQ_0294, RQ_0297, RQ_0300

ZA3.03.10
Conduct manual test

Priority: Must

Who: Operator
When / Where: When the operator is conducting the manual test
What: Indicate manual test result
Why: To conduct the manual test

Acceptance Criteria The operator can push an actuator in the test unit to determine the result of the
test

Requirements filled RQ_0298, RQ_0299

ZA3.03.11
Collect results

Priority: Must

Who: Test unit adapter
When / Where: When the operator has indicated the result of the manual test
What: Read the test result
Why: To store the results

Acceptance Criteria The operator can use an actuator to specify the test result
The test unit adapter can read the result from the test unit control

Requirements filled None

ZA3.03.12
Store results

Priority: Must

Who: Application storage
When / Where: When the operator has indicated the result of the manual test
What: Store the results
Why: For further analysis in other applications

Acceptance Criteria The test unit adapter can store the results of the test
The results include the test unique identifier
The results include the product type
The results include the resource identifier of the image

Requirements filled RQ_0285, RQ_286, RQ_0301, RQ_302, RQ_0303, RQ_304

Figure 270zA3.03 Features

7.14.3 Workflows

 Low level configuration

This workflow sets up the application configuration parameters that are more integrated
into the ZDMP Platform, like data sources and connections to exchange data with
manufacturing assets. The main steps are:

• Configure data sources for master data

• Configure the connection to the test unit controller

• Configure the resource location of the variables to be used to exchange information
with the test unit controller

The workflow is analogous to the low-level configuration of zXRayMonitor in Figure 265.

 Test unit sequence configuration

This workflow sets up the configuration of the tests to be conducted for every product type.
The main steps are:

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 306 / 334

• Select product type

• Edit test sequence configuration

• Edit test configurations

The workflow is similar to the test unit sequence configuration workflow of zXRayMonitor
depicted in Figure 266.

 Operational data exchange

This workflow manages all data exchange with the test unit. The main steps are:

• Detect product type

• Load configuration parameters

• Show information to operator

• Collect tests results

• Store tests results

Figure 271: Product Type Detection Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 307 / 334

Figure 272: Test Identifier Detection Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 308 / 334

Figure 273: Current Test Presentation Sequence Diagram

Figure 274: Result Collection and Storage Sequence Diagram

7.14.4 Additional Issues

Additional issues have appeared after the description of the functional specification.

Issue Description Next Steps Lead
(Rationale)

Filled
Requirements

The following requirements with a “must“-priority
were targeted at different platform components,
but are specific to this application and thus
partially filled by its functions RQ_0282, RQ_0283,

RQ_0284, RQ_0285, RQ_0286, RQ_0287, RQ_0288,
RQ_0289, RQ_0290, RQ_0291, RQ_0292, RQ_0293,
RQ_0294, RQ_0295, RQ_0296, RQ_0297, RQ_0298,
RQ_0299, RQ_0300, RQ_0301, RQ_0302, RQ_0303,
RQ_0304

Discuss with
requirement
providers who to
solve the issue

Product owner
UPV

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 309 / 334

7.15 zArtificial IntelligenceAFT (zA3.06)

7.15.1 Overall functional characterization & Context

The zArtificialIntelligenceAFT helps test engineers fine tune the parameters of automatic
tests. The test units rely on image processing algorithms to perform automatic tests and
the parameters of these algorithms must be set accurately to minimise the occurrence of
false automatic test results. zArtificialIntelligenceAFT correlates false automatic test results
with the parameters of the algorithm, presents analytical reports to the test engineer, and
suggests parameter adjustments to minimise the occurrence of false automatic test
results, based on machine learning algorithms. False test results are detected using
different available control loops: Feedback from the test engineer in the analysis station,
feedback from the final manual test, and feedback from the customer acceptance tests.
The zFeedbackAFT collects and stores the results of the tests and the feedback loops,
thus providing the data used by the zArtificialIntelligenceAFT. The application provides
backend interfaces to edit the configuration of the training data sources and the
optimisation cost function.

7.15.2 Functions / Features

• Optimisation configuration: Backend function to edit some configuration
parameters of the optimisation algorithm, like the location of the training data sources
or weighting parameters to model the impact for the company of a false automatic
test results at each feedback control loop (eg a false negative at the customer site is
more expensive than a false positive detected at the analysis station).

• Results analysis: Statistical analysis functions and user interfaces to present the
test engineer with historic data statistical analysis and trends of the measurement
results.

• Parameter set optimisation: Optimisation functions based on machine learning to
calculate the set of optimal parameters that minimise the probability of false
automatic test results in the test system, based on the training data. The optimisation
algorithm uses a cost function dependent of the number of false automatic test
results at the different feedback loops.

• Optimal parameter cost representation: Graphic dashboards and user interfaces
to present the test engineer with the difference between the current test unit
configuration and the optimal configuration parameters. For every parameter, the
user interfaces represent the cost function against the different values used in the
training data.

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
ZA3.06.1
Configure data
sources

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User selects data sources
Why: To configure data sources with the test records used by the optimisation
algorithm

Acceptance Criteria The user can create a new configuration

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 310 / 334

The user can create a data source
The user can select data sources that have been previously configured in the
platform
The user can update the configuration with the selected data source

Requirements filled RQ_0328

ZA3.06.2
Configure
optimisation
algorithm

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User configures additional configuration parameters of the optimisation
algorithm
Why: To better adapt to the results to the context of the company

Acceptance Criteria The user can set some configurations of the optimisation algorithm
The configuration is updated with the parameters provided by the user

Requirements filled RQ_0329

ZA3.06.3
Analyse automatic
test results

Priority: Should

Who: Test engineer
When / Where: After a positive (non-conformance) result, on the analysis station
(on premise)
What: Analyse the results of automatic tests
Why: To obtain in-depth insight of the false automatic test results under analysis

Acceptance Criteria The user can obtain graphic reports showing statistical analysis of historic data
related to an automatic test result
The user can analyse historic data based on different criteria
The test engineer can set parameters to filter data and configure analytics
Process quality can use test results records as inputs

Requirements filled RQ_0330

ZA3.06.4
Check optimal
parameter
configuration

Priority: Must

Who: Test Engineer
When / Where: After a positive (non-conformance) result, on the analysis station
(on premise)
What: get optimal configuration parameters and compare with current
configuration
Why: To edit the configuration of the test after a false automatic test result

Acceptance Criteria The user can check the optimal configuration parameters for every product type
The user can compare the current configuration with the optimal configuration
The user can compare optimal and current configuration parameters with the
training data

Requirements filled RQ_0327, RQ_0330

Figure 275: zA3.06 Features

7.15.3 Workflows

 Optimisation configuration

This workflow provides access to some configuration parameters of the optimization
algorithm. The main steps are:

• Edit training data sources

• Edit additional parameters

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 311 / 334

Figure 276: Optimisation Configuration Diagram

 Result Analysis

This workflow provides insights on the training data and the configuration parameter
optimization results. The main steps are:

• Analyse results

• Check optimal configuration parameters

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 312 / 334

Figure 277: Result Analysis Sequence Diagram

7.15.4 Additional Issues

Additional issues have appeared after the description of the functional specification.

Issue Description Next Steps Lead
(Rationale)

Filled
Requirements

The following requirements with a “must“-priority
were targeted at different platform components,
but are specific to this application and thus
partially filled by its functions RQ_0327,
RQ_0328, RQ_0330

Discuss with
requirement
providers who to
solve the issue

Product owner
UPV

7.16 zDriver & zLineData & zDataArchiveControl (zA3.07&3.08,

3.15)

7.16.1 Overall functional characterization & Context

zDriver, zLineData, and zLineControl aim to facilitate the connection and management of
data exchange with the different workstations in the assembly line. Other applications (eg
zPowerManager, zVisualManager and zCycleTimeManager) use these functions to send
data (configuration data and commands) to and receive data from (manufacturing
operations data) the components of the assembly line. For the sake of clarity, this section
describes the three applications together. zDriver component manages the exchange of
data with the different workspaces of the assembly line. The zDriver component runs in a
line server and is connected to the controllers of the different workspaces to collect the
necessary data. To comply with industrial security requirements, the zDriver implements a
client application, eg based on the Message Queueing Telemetry Transport (MQTT)
protocol, to connect to other components in the ZDMP Platform. Communications in the
line use a proprietary Transport Control Protocol (TCP). zDriver is thus basically a gateway
application providing backend interfaces to manage the modelling of the assembly line and
the configuration of the connection to the different workspaces therein. Functions of
zDriver are identified with ids ZA3.07 [1-4]. zLineData provides backend functionalities to
model the assembly line and control the data workflows. Functions of zLineData are
identified with ids ZA3.08 [1-6]. Finally, zDataArchiveControl implements data retention
policies to reduce the volume of industrial data, using ZDMP storage component functions.
Functions of zDataArchiveControl are identified with ids ZA3.15.1.

7.16.2 Functions / Features

• Industrial data collection configuration: Backend function to configure the
connections to exchange data with the different workstations. The user can define
different industrial variables. Industrial variables are used to read the (part serial
number, workspace start (check-in) time, workspace finish (check-out) time,
operation result, error information, machine status, material consumption, and
material stock available at each workspace. They are also used to load information
into the workspace control to optimise product changeover and minimise set-up time.

• Assembly Line configuration: Backend function to configure the organisation of the
assembly line into workspaces. The user can define workspaces, assign them a

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 313 / 334

name to better identify them, and arrange then in serial or parallel configurations
within the assembly line. For every workspace, the user can define the configuration
of the data collection variables of each workstation.

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
ZA3.08.1
Configure storage

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User configures data management and data retention policies
Why: To set up application storage

Acceptance Criteria The user can select data retention policies to maintain relevant time series data

Requirements filled RQ_0331, RQ_0332, RQ_0333, RQ_079, RQ_0380, RQ_0382, RQ_0386

ZA3.08.2
Configure
manufacturing data
connection

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User selects data sources (files, database connections) to integrate
manufacturing data
Why: To integrate master data and manufacturing execution system information

Acceptance Criteria The user can create a new manufacturing data configuration
The user can create a new data source
The user can select data sources that have been previously configured in the
platform
The user can update a master data configuration with the selected data source
Manufacturing data provides access to product type information
Manufacturing data provides access to work order information
Manufacturing data provides access to BoM information
Manufacturing data provides access to operations information

Requirements filled RQ_0331, RQ_0332, RQ_0333, RQ_0372,

ZA3.08.3
Configure test unit
connection

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User configures a connection to a workspace control
Why: To enable data exchange

Acceptance Criteria The user can create a new assembly line model
The user can edit the connection parameters
The user can select data connections that have been previously configured in the
platform
Optionally, the user could browse the field network to search for available
connections

Requirements filled RQ_0331 RQ_0332, RQ_0333

ZA3.08.4
Configure industrial
variables

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User configures industrial variables
Why: To exchange data with the test unit control program

Acceptance Criteria The user can select data sources that have been previously configured in the
platform

Requirements filled RQ_0331 RQ_0332, RQ_0333

ZA3.08.5
Edit assembly line
configuration

Priority: Must

Who: Production Engineer
When / Where: During configuration (runtime), on premise

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 314 / 334

What: User configures the assembly
Why: To edit the configuration of the line

Acceptance Criteria The user can create new workstations
The user can organise the workstations in the line (workstation order and parallel
or serial configuration)

Requirements filled RQ_0331 RQ_0332, RQ_0333

ZA3.08.6
Edit workstation
configuration

Priority: Must

Who: Test Engineer
When / Where: During configuration (runtime), on premise
What: User edits the configuration of a workstation
Why: To specify the variables used to exchange data with the controller

Acceptance Criteria The user can edit the name of the workstation
The user can edit the product-in variable to read the product type of a product
entering the workstation
The user can edit the product-out variable to read the product type of a product
leaving the workstation
The user can edit the status variable to read the status of the workstation
The user can edit error variable(s) to read the occurrence of failures in the
workstation
The user can edit the variables to read the stock of components
The user can edit the variables to read energy consumption
The user can edit the variables to write automatic changeover parameters
The user can edit the variables to write commands to switch on and off
components

Requirements filled RQ_0331, RQ_0332, RQ_0333

ZA3.07.1
Detect product type

Priority: Must

Who: Assembly line data collection adapter
When / Where: When a product enters or leaves a workstation (runtime), in the
assembly line
What: Read the part number of the product instance that enter or leaves the
workstation
Why: To detect which is the product type, load the right configuration parameters
into the workstations, and measure the cycle time

Acceptance Criteria The assembly line model contains the parameters to connect to the different
workstation program logic controllers and exchange information
The assembly line adapter can connect to the different workstation program logic
controllers
The assembly line adapter can publish data to exchange data with other
components
The assembly line adapter can update the assembly line model with the topics of
the parameters to be exchanged
The assembly line adapter is connected (TCP/IP) to the program logic controllers
in the workstations
The assembly line adapter can read the part number variable in the program
logic controller and publish the part number code value in the configured product-
in or product-out variable

Requirements filled RQ_0334, RQ_0363

ZA3.07.2
Load configuration
parameters

Priority: Must

Who: Assembly line data collection adapter
When / Where: Before the first product instance of a work order enters a
workstation
What: write the values of the automatic changeover parameters in the
workstation program logic control
Why: To configure the workstation for the product type

Acceptance Criteria The assembly line adapter can get the variables and values to write for the
product type and workstation from the assembly line model

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 315 / 334

The assembly line adapter can write the values in the test unit control variables
indicated in the configuration

Requirements filled RQ_0354

ZA3.07.3
Production data
collection

Priority: Must

Who: Assembly line data collection adapter
When / Where: When the workstation is processing a product instance
(runtime), in the assembly line
What: Read the data in the workstation
Why: To know the status of the workstation, the material stock levels, energy
consumption, alarms, etc in the workstation

Acceptance Criteria The assembly line adapter can read the status variables
The assembly line adapter can read error variable(s)
The assembly line adapter can read the stock level variables
The user can edit read energy consumption variables
The assembly line adapter creates a production data record with the collected
data
The production data record contains the read variable values
The production data record contains the product type
The production data record contains manufacturing operations management data
like check-in and check-out timestamps

Requirements filled This subtask fills several requirements for zPowerManagement, zVisualManager
and zCycleTimeManager

ZA3.07.4
Production data
storage

Priority: Must

Who: Application storage
When / Where: When the production data is received from the workstation
controller
What: Store the production data records
Why: For further analysis in other applications

Acceptance Criteria The assembly line adapter can store production data records

Requirements filled This subtask fills several requirements for zPowerManagement, zVisualManager
and zCycleTimeManager

ZA3.15.1
Production data
storage

Priority: Must

Who: Application storage
When / Where: According to the data retention policy configuration
What: Delete or archive records
Why: To reduce the volume of industrial data

Acceptance Criteria The user can restore data

Requirements filled RQ_0385, RQ_0386

Figure 278: zA3.07&3.08, 3.15 Functions

7.16.3 Workflows

 Low level configuration

This workflow sets up the application configuration parameters that are more integrated
into the ZDMP Platform, like data sources and connections to exchange data with
manufacturing assets. The main steps are:

• Configure data retention policies

• Configure master data sources

• Configure the connection to the workspace controllers

• Configure the resource location of the variables that is used to exchange information
with the workspace controllers

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 316 / 334

The workflow is analogous to the low-level configuration of zXRayMonitor in Figure 265.

 Assembly line configuration

This workflow sets up the configuration of the model of the assembly line. The main steps
are:

• Select assembly line

• Edit assembly line organisation configuration

• Edit workspace configurations

The workflow is similar to the test unit sequence configuration workflow of zXRayMonitor
depicted in Figure 266.

 Operational data exchange

This workflow manages all data exchange with the test unit. The main steps are:

• Detect product type

• Load configuration parameters

• Collect production data

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 317 / 334

Figure 279: Operational Data Collection Sequence Diagram

7.16.4 Additional Issues

Additional issues have appeared after the description of the functional specification.

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 318 / 334

Issue Description Next Steps Lead
(Rationale)

Filled
Requirements

The following requirements with a “must“-priority
were targeted at different platform components,
but are specific to this application and thus
partially filled by its functions RQ_0333,
RQ_0363, RQ_0382, RQ_0384, RQ_0385,
RQ_0386

Discuss with
requirement
providers who to
solve the issue

Product owner
UPV

7.17 zVisualManager, zCycleTimeManager, zAutomaticCall,

zPowerManagement (zA3.09, zA3.11, zA3.12, zA3.13)

7.17.1 Overall functional characterization & Context

zVisualManager is a backend application to configure visual graphic dashboards to show
Key Process Indicators (KPIs) calculated using the assembly line data collected by the
zDriver application, and events that are triggered eg when an indicator decreases below a
given threshold, or when a workstation is in a given failure state. The user can also
configure e-mail notifications to specific users (eg maintenance engineer) for every
configured event. To do so, the application applies standard formulas and methods to
obtain indicators from industrial data records. Functions of zVisualManager are identified
with id ZA3.09.1. zCycleTimeManager uses this functions to calculate production KPIs like
cycle time, availability, performance, quality, and Overall Equipment Efficiency (OEE), both
per line and per workstation. Through the provided backend interfaces, the user can either
set up objectives for every indicator or collect these objectives from manufacturing
operations management data sources. zPowerManagement applies the same concept to
power management, calculating Energy Performance Indicators (EnPIs) from the collected
data. Common functions of zCycleTimeManager and zPowerManager are identified with
ids ZA3.11 [1-2]. Finally, zAutomaticCall manages event processing and notifications.
These functions are identified with id ZA3.12 .1.

7.17.2 Functions / Features

• Configuration: Backend functions to configure the application. The user can define
the formulas to calculate the KPIs form the production data records. Industrial
variables are used to read the (part serial number, workspace start (check-in) time,
workspace finish (check-out) time, operation result, error information, machine status,
material consumption, and material stock available at each workspace. They are also
used to load information into the workspace control to optimise product changeover
and minimise set-up time. The user can use different graph types to set up the visual
dashboards and configure the notifications.

• Production KPI calculation: Calculation of cycle times, production KPIs and EnPIs
from production data records using the configured formulas.

• e-mail notifications: Notifications to users according to the provided information.

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
ZA3.09.1 Priority: Should

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 319 / 334

Configuration Who: ZDMP consultant
What: User configures KPI calculation, dashboards, and notifications
Why: To set up parameters for power management, efficiency management, as
well as configure dashboards and notifications

Acceptance Criteria The user can configure formulas using attributes of production data records
The user can configure the dashboards used to show production KPIs and EnPIs
The user can configure the rules to generate notifications and their behaviour
The user can implement energy efficiency strategies based on EnPIs,
dashboards, rules, and notifications

Requirements filled RQ_0340, RQ_0341, RQ_0348, RQ_0350, RQ_0351, RQ_0352, RQ_0353, RQ_0359, RQ_0361,
RQ_0362

ZA3.12.1
KPIs Visualisation

Priority: Must

Who: Production Engineer
When / Where: When a new production data record is published (runtime), in the
assembly line
What: Visualises graphic dashboards showing the calculated KPIs
Why: To evaluate the performance of the assembly line and workstations

Acceptance Criteria The monitoring and alerting component can subscribe to receive production data
records
The monitoring and alerting component calculates KPIs when a new production
data record is published
The user can visualise the KPIs in the configured dashboards
The dashboards are updated with every production data record

Requirements filled RQ_0348

ZA3.12.2
Calculate Indicators

Priority: Must

Who: Production Engineer
When / Where: When a new production data record is published (runtime), in the
assembly line
What: Creates indicators where the KPI data is trending
Why: To forecast the performance of the assembly line and workstations

Acceptance Criteria The application calculates OEE indicator and components (performance,
availability, quality)
The application calculates energy efficiency indicators (consumption per
production unit)

Requirements filled RQ_0365, RQ_0366, RQ_0367, RQ_0369

ZA3.12.1
Receive notification

Priority: Must

Who: Production Engineer
When / Where: When a new production notification is published (runtime), in the
assembly line
What: User receives a notification
Why: To take immediate actions and contain the problem

Acceptance Criteria The user receives a notification according to the configured rules
The user can receive e-mail notifications.

Requirements filled RQ_0343, RQ_0344, RQ_0345, RQ_0347, RQ_0349

Figure 280: zA3.09, zA3.11, zA3.12, zA3.13 Functions

7.17.3 Workflows

 Configuration

This workflow sets up the configuration of the application. The main steps are:

• Configure formulas

• Configure dashboards

• Configure notifications

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 320 / 334

The workflow is analogous to the low-level configuration of zXRayMonitor in Figure 265.

 Operational data exchange

This workflow manages all data exchange with the Production Engineer unit. The main
steps are:

• Receive production data records

• Calculate KPIs

• Update dashboards

• Send notifications

Figure 281: Operational Data Collection Sequence Diagram

7.17.4 Additional Issues

Additional issues have appeared after the description of the functional specification.

Issue Description Next Steps Lead
(Rationale)

Filled
Requirements

The following requirements with a “must“-priority
were targeted at different platform components,
but are specific to this application and thus
partially filled by its functions RQ_0343,
RQ_0344, RQ_0345, RQ_0347, RQ_0349,
RQ_0365, RQ_0366, RQ_0367, RQ_0369

Discuss with
requirement
providers who to
solve the issue

Product owner
UPV

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 321 / 334

7.18 zProductVersionControl, zAutomaticMaterialOrdering

(zA3.10, zA3.14)

7.18.1 Overall functional characterization & Context

zProductVersionControl supports product changeover through the exchange of data with
both machines (workstation control) and humans (operator). The operator indicates which
is the next work order for the assembly line, by selecting one order from the planned work
order sequence. The detection of an instance of the new product type in every workspace,
via the zDriver application, triggers a product changeover event that is used to forward
relevant information to optimise product changeover and ensure product quality. The
layout of the workstations and the sequence of operations is obtained from the assembly
line model and the integrated manufacturing operations data. Functions of
zProductVersionControl are identified with ids ZA3.10.1-3. zAutomaticMaterialOrdering
checks material stock levels at every workspace and generates picking orders for the
materials needed to avoid shortage. Operators get detailed instructions on the sequence
of operations needed to complete the work order. Data exchange with machine control is
used to automate the changeover process as much as possible, setting up certain
parameters of the workspace control to minimise changeover time and process variability.
When the stock levels go below pre-established levels, the application generates an
automatic picking order to prevent stock breaks. zAutomaticMaterialOrdering functions are
identified with ids ZA3.14. 1-2.

7.18.2 Functions / Features

• Changeover control: Start the changeover process in a workstation. The work order
is set manually by the operator in the first workstation. Based on the manufacturing
operations information, the application sets the next work order for the next
workstations. When the application detects that the first unit of the next work order is
entering a workstation, the application writes the configured changeover parameters
into the workstation programming logic control

• Operator dashboards: Dashboards containing information to present to the operator
with detailed information about the status of the current work order and the next work
order

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
ZA3.10.1
Work order start

Priority: Must

Who: Operator
What: Confirm the next work order
When / Where: When a new work order starts, in the first workstation of the
assembly line
Why: To start a work order

Acceptance Criteria The operator can select the work orders from a list of planned work orders
The list of planned work orders is read from the integrated manufacturing
operations data sources

Requirements filled RQ_0337

ZA3.10.2 Priority: Must

Who: Operator

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 322 / 334

Changeover
parameters write

What: Publish the changeover parameters of a workstation
When / Where: When a new work order starts, in any workstation of the
assembly line
Why: To evaluate the performance of the assembly line and workstations

Acceptance Criteria The assembly line adapter is subscribed to receive changeover parameter
variable values
The application is subscribed to receive product-in variable values from the
assembly line adapter
The assembly line adapter publishes the product type of the next work order
The application publishes the values for the changeover parameters of the next
order

Requirements filled RQ_0335, RQ_0336, RQ_0338, RQ_0339,

ZA3.10.3
Visualise changeover
dashboards

Priority: Must

Who: Operator
What: visualise updated information about the current work order and the next
work order
When / Where: When a new production record is published, in any workstation
of the assembly line
Why: To optimise operations and resource allocation

Acceptance Criteria The user can visualise instructions to perform the operation of the current work
order in the current workstation
The user can visualise the status of the next work order in the previous
workstations
The user can visualise the expected time of arrival of the first product instance of
the next workstation

Requirements filled RQ_0337

ZA3.14.1
Check stock levels

Priority: Must

Who: Operator
What: Check the stock levels for components and materials
When / Where: When a new production record is published, in any workstation
of the assembly line
Why: To optimise operations and resource allocation

Acceptance Criteria The user can check the stock levels for the different components of the product
type of the current work order in the workstation

Requirements filled RQ_0337, RQ_0374

ZA3.14.2
Send automatic
material ordering

Priority: Must

Who: Picking operator
What: User receives a notification
When / Where: When the stock level of components or materials are not enough
to complete the work order, in any workstation of the assembly line
Why: To prevent stock break take immediate actions and contain the problem

Acceptance Criteria The user receives a notification according to the configured rules
The user can receive e-mail notifications.

Requirements filled RQ_0373, RQ_0375, RQ_0376, RQ_0378

Figure 282: zA3.10, zA3.14 Functions

7.18.3 Workflows

 Operational data exchange

This workflow manages all data exchange with the Production Engineer unit. The main
steps are:

• Start work order

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 323 / 334

• Configure workstation

• Update information

• Send picking orders for materials and components

7.18.4 Additional Issues

Additional issues have appeared after the description of the functional specification.

Issue Description Next Steps Lead
(Rationale)

Filled
Requirements

The following requirements with a “must“-priority
were targeted at different platform components,
but are specific to this application and thus
partially filled by its functions RQ_0335,
RQ_0336, RQ_0338, RQ_0373, RQ_0376

Discuss with
requirement
providers who to
solve the issue

Product owner
UPV

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 324 / 334

7.19 zArtificial IntelligenceMFT (zA3.04)

7.19.1 Overall functional characterization & Context

The zArtificialIntelligenceMFT application helps test engineers in order to reduce the quality
incidents in parallel with a more secure and efficient optical inspection process. The test units
consist of image processing algorithms to perform manual tests and the parameters of these
algorithms must be set accurately to minimise the occurrence of false manual test results. The
application provides backend interfaces to edit the configuration of the training data sources
and the optimisation cost function.

7.19.2 Functions / Features

• Optimisation configuration: this function is used to edit some configuration
parameters of the optimisation algorithm, like the location of the training data sources
or weighting parameters to model the impact for the company of a false automatic
test results at each feedback control loop.

• Results analysis: this feature presents the historic data statistical analysis and
trends of the measurement results to test engineer.

• Parameter set optimisation: based on machine learning algorithms there are
optimization functions that calculate the set of optimal parameters for minimising the
probability of false manual test results in the test system, based on the training data.

• Optimal parameter cost representation: this functionality consists of graphic
dashboards and user interfaces to present the difference between the current test
unit configuration and the optimal configuration parameters to the test engineer.

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
ZA3.04.1
Configure data
sources

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User selects data sources
Why: To configure data sources with the test records used by the optimisation
algorithm

Acceptance Criteria The user can create a new configuration, a new data source, also select / update
a data source.

Requirements filled RQ_0307

ZA3.04.2
Configure
optimisation
algorithm

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User configures additional configuration parameters of the optimisation
algorithm
Why: To better adapt to the results to the context of the company

Acceptance Criteria The user can set some configurations of the optimisation algorithm
The configuration is updated with the parameters provided by the user

Requirements filled RQ_0306

ZA3.04.3
Analyse automatic
test results

Priority: Should

Who: Test engineer
When / Where: After a positive (non-conformance) result, on the analysis station
(on premise)

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 325 / 334

What: Analyse the results of automatic tests
Why: To obtain in-depth insight of the false automatic test results under analysis

Acceptance Criteria The user can obtain graphic reports showing statistical analysis of historic data
related to an automatic test result
The user can analyse historic data based on different criteria
The test engineer can set parameters to filter data and configure analytics
Process quality can use test results records as inputs

Requirements filled RQ_0305

ZA3.04.4
Check optimal
parameter
configuration

Priority: Must

Who: Test Engineer
When / Where: After a positive (non-conformance) result, on the analysis station
(on premise)
What: get optimal configuration parameters and compare with current
configuration
Why: To edit the configuration of the test after a false automatic test result

Acceptance Criteria The user can check the optimal configuration parameters for every product type
The user can compare the current configuration with the optimal configuration
The user can compare optimal and current configuration parameters with the
training data

Requirements filled RQ_0308

Figure 283: zA3.04 Functions

7.19.3 Workflows

The following sub-sections describe the sequence diagrams of the zArtificialIntelligenceMFT
component.

 Optimisation configuration

This workflow provides access to some configuration parameters of the optimization algorithm.
The functions shown are:

• Edit training data sources

• Edit additional parameters

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 326 / 334

Figure 284: Optimization Configuration Sequence Diagram

 Result Analysis

This workflow ilustrates flows on the training data and the configuration parameter optimization
results. The functions displayed are:

- Analyse results

- Check optimal configuration parameters

Figure 285: Result Analysis Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 327 / 334

7.20 zFeedbackAFT (zA3.05)

7.20.1 Overall functional characterization & Context

The zFeedbackAFT application assures the interface with Automatic Final Test, correlates
the test image, tests results, and increases the quality of test result. The test unit uses a
reference image and additional information describing the status of the product under test
when there are no failures. This application has an user interface that shows an image of the
product in the test unit taken with an external vision interface.

7.20.2 Functions / Features

• Data sources configuration: this function is used to configure the data sources
used to integrate master data. Master data includes product type information, test
information, and reference images.

• Industrial data collection configuration: this functionality is dealing with
configation of the connections to exchange data with the test unit control. The user
can define different industrial variables. Industrial variables are used to read the
product instance part number, the current test, and the automatic test results.

• Product type configuration: this backend function edits the properties and test
sequence for a specific product type. The user can select the product type and edit
the test sequence. For every test, the user can edit the configuration parameters of
the test. The configuration of a test consists industrial variables used to collect the
results.

• Part number detection: this is to detect the product type unique identifier of the
product under test.

• Test detection: this function detects the test being performed in the test unit

• Test operator support: this functionality is used to present the information of the
test to the operator in a friendly user interface.

• Test unit results collection: this is to collect and store the results of the automatic
test unit.

These functions can be further decomposed into the following subtasks that have to be
realised:

Subtask Subtask description
ZA3.05.1
Configure master data
sources

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User selects data sources (files, database connections) to integrate
master data
Why: To integrate master data information

Acceptance Criteria The user can create a new master data configuration and a new data source
The user can select data sources that have been previously configured in the
platform
The user can update a master data configuration with the selected data source

Requirements filled RQ_0321

ZA3.05.2
Configure test unit
and camera
connection

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User configures a connection to the test unit control
Why: To enable data exchange

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 328 / 334

Acceptance Criteria The user can create a new unit model
The user can edit the connection parameters

Requirements filled RQ_0325

ZA3.05.3
Configure industrial
variables

Priority: Should

Who: ZDMP consultant
When / Where: During configuration (runtime), on premise
What: User configures industrial variables
Why: To exchange data with the test unit control program

Acceptance Criteria The user can create a new industrial variable
The user can specify the necessary parameters to read and write data from the
variable

Requirements filled RQ_0319

ZA3.05.4
Result test collection

Priority: Must

Who: Test unit adapter
When / Where: During optical tests (runtime), on premise
What: For every test, the test unit data aquisition adapter must collect the unique
code of the product under test, the results of the test, and the configuration
parameters used by the unit test automation program
Why: To detect false positives and false negatives results.

Acceptance Criteria Product codes, configuration parameters and test results collected.

Requirements filled RQ_0322

ZA3.05.5
Result test storage

Priority: Must

Who: Apllication Storage
When / Where: During optical tests (runtime), on premise
What: zFeedBackAFT must store the tests results, linked to the unit test
identifier, the product under test unique identifier, and the configuration
parameters used
Why: To perform future analysis

Acceptance Criteria Product identified and configuration data stored

Requirements filled RQ_0323

ZA3.05.6
Analysis results
collection

Priority: Must

Who: Test engineer
When / Where: During optical tests (runtime), on premise
What: For every positive (failure detected) result, the zFeedbackAFT application
needs to collect the result of the analysis in the analysis station
Why: To improve the quality of future tests

Acceptance Criteria Analysis result collected

Requirements filled RQ_0326

Figure 286: zA3.05 Functions

7.20.3 Workflows

 Low level configuration

This workflow sets up the application configuration parameters that are more integrated into
the ZDMP Platform, like data sources and connections to exchange data with manufacturing
assets. The main steps are:
• Configure data sources for master data

• Configure test unit and camera connection

• Configure industrial variables

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 329 / 334

Figure 287: Low level configuration Sequence Diagram

 Operational Data Exchange

This workflow provides access to some configuration parameters of the optimization algorithm.
The functions shown are:

• Result test collection

• Result test storage
Results collection analysis

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 330 / 334

Figure 288: Operational Data Exchange Sequence Diagram

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 1 / 334

http://www.zdmp.eu/

 Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 2 / 334

8 Conclusions

The current document represents a considerable amount of specification work by the
technical partners that went into understanding the requirements presented by T4.1 and
T4.2 and reflect on the single functions that would need implementation as well as the
communication necessary to make the functions work out.

The state of specifications within this document was based of the subcomponents as
defined by D4.3.1 Architecture Specification and was only expanded on in the components
presented in WP7 and WP8.

The presented zApps that will be created within WP9 and WP10 were not planned to be
defined within specifications, but as they present the missing link between the use cases
and the base platform components of WP5-6 and the process and product quality specific
components of WP7-8, special care was taken to also define the zApps in more detail and
present their functions.

The target of this document was in part to analyse the requirements and the fulfilment of
those by the respective functions of the presented components. As the level of detail in the
requirements document as well as the presented detail in this document was by far
exceeding the expectations of the task lead of the functional specification, the discussion
and necessary changed in plans in order to fill all currently unfilled requirements will have
to be continued in the following months, as well as reassigning zApp-specific requirements
from base components to specific zApps, which were not considered in the requirements
definition as all requirements were only targeted towards the base components.

To enable doing this work soon, all the requirements filled by the single modules and
zApps were collected in the respective functions’ tables, and all not filled requirements that
were targeted at a certain task were put into a specific table.

The main idea of this Functional Specification was to make component-, module- and
zApp-creators aware of the expectations towards their software from the users and the
technical partners. Even though a very heavy document was produced in this way, much
detail about single functions was collected and, in the course, many fruitful discussions
were started and concluded in the making of this document. Much could still be refined
and more closely aligned and analysed, but the consortium is now moving towards
defining interfaces for the Technical Specification. These interfaces will be the definition
the developers can work against in the system and will be subject to change and therefore
be defined in an online web system based on Slate, Gitlab and Swagger.

http://www.zdmp.eu/

Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 3 / 334

Annex A: History

Document History

Versions

• V1.01:

• PM Reviewed version and for EU Submission

• V1.02-3:

• ASC minor fixes, updated logos, updated two sections

Zero Defects Manufacturing Platform – www.zdmp.eu

D4.4a: Functional Specification - Vs: 1.0.3 - Public 4 / 334

Contributions

ICE:

• Philip Usher

• Stuart Campbell

• James Tryand

• Ann Campbell
SAG:

• Martin Hess

• Marc Dorchain
SIVECO:

• Mircea Vasile
CET:

• Ernesto Bedrina

• Sandra Vilaplana

• Juan Pardo
 VSYS:

• Alessandro Liani

• Mauro Fabrizioli
ASC:

• Tim Dellas

• Nargis Tahara

• Laura Caroline
PROF:

• Daniela Kirchberger

• Baghbanpourasl Amirreza
SOFT:

• Christian Melchiorre

• Lorenzo Cesario
ROOT:

• Alvaro Moretón Poch
ITI:

• Santiago Cáceres Elvira

• Paco Velverde
UPV:

• Francisco Fraile
IKER:

• Marc Barceló

• Urko Leturiondo

• Oscar Salgado
UOS-ITI:

• Juri Papay
UNIN:

• Carlos Lopes
TUT:

• Ronal Bejarano

www.zdmp.eu

